K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=1+3^1+3^2+3^3+3^4+....+3^{99}+3^{100}\)

\(\Rightarrow3A=3+3^2+2^3+3^4+....+3^{100}+3^{101}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3^1+3^2+....+3^{100}\right)\)

\(\Rightarrow2A=3^{101}-1\)

\(\Rightarrow A=\frac{3^{101}-1}{2}\)

14 tháng 7 2016

\(A=1+3^1+3^2+...+3^{99}+3^{100}\)

\(3A=3+3^1+3^2+...+3^{99}+3^{100}\)

\(3A-A=\left(3+3^2+3^3+...+3^{100}+3^{101}\right)-\left(1+3^1+3^2+...+3^{100}\right)\)

\(2A=3^{101}-1\)

\(A=\left(3^{101}-1\right):2\)

27 tháng 8 2020

a) Ta có: \(A=1+3+3^2+...+3^{99}+3^{100}\)

=> \(3A=3+3^2+3^3+...+3^{100}+3^{101}\)

=> \(3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)

<=> \(2A=3^{101}-1\)

=> \(A=\frac{3^{101}-1}{2}\)

b) Ta có: \(B=1+4+4^2+...+4^{100}\)

=> \(4B=4+4^2+4^3+...+4^{101}\)

=> \(4B-B=\left(4+4^2+...+4^{101}\right)-\left(1+4+...+4^{100}\right)\)

<=> \(3B=4^{101}-1\)

=> \(B=\frac{4^{101}-1}{3}\)

26 tháng 9 2017

a) Đặt A = 21 + 22 + 23 +....+299 + 2100

=> 2A = 2+ 22 + 23 +...+2100 + 2101

=> 2A - A = 2 + 22 + 23 +...+2100 + 2101 - (1+2+22+23+...+299+2100)

=> A = 2 + 22 + 23 +...+ 2100 +2101 -1 - 2 - 22 - 23 -...- 299 - 2100

= 2101 -1

Vậy....

27 tháng 9 2017

b) B = 2 + 23 + 25 + ... + 22013

4B = 23 + 25 + 27 + ... + 22015

4B - B = (23 + 25 + 27 + ... + 22015) - (2 + 23 + 25 + ... + 22013)

3B = 22015 - 2

B = \(\dfrac{2^{2015}-2}{3}\)

21 tháng 10 2020

con cặc, đéo thèm trả lời

21 tháng 10 2020

đéo trl thì cút mẹ m đi!

1 tháng 8 2017

A=1+3+32+33+34+35+………..+399+3100

3A = 3+32+33+34+35+………..+3100+3101

3A - A = ( 3+32+33+34+35+………..+3100+3101 ) - ( 1+3+32+33+34+35+………..+399+3100 )

2A = 3101 - 1

A = \(\frac{3^{101}-1}{2}\)

5 tháng 8 2017

3mu101