\(2^{100}\)+\(2^{99}\)+\(2^{98}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

Đặt A = 2 100 + 2 99 + 2 98 + .... + 22 +2 +  1

    2A = 2 101 + 2 100 + 2 99 + .... + 2 3 + 2 2 + 2

2A - A = ( 2 101 + 2 100 + 2 99 + .... + 2 3 + 2 2 + 2 )

            - ( 2 100 + 2 99 + 2 98 + .... + 22 +2 +  1 )

 A        = 2 101 - 1

20 tháng 1 2018

= 2101 + 2100 + 299 + ... + 2+ 2 + 1 

=(2101 -  1): 2

25 tháng 7 2017

help me, please

21 tháng 10 2016

\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=\frac{a_3-3}{98}=...=\frac{a_{100}-100}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a_1-1+a_2-2+a_3-3+...+a_{100}-100}{1+2+3+...+100}\)\(=\)\(\frac{a_1+a_2+a_3+...+a_{100}-\left(1+2+3+...+100\right)}{1+2+3+...+100}\)

                                                                                \(=\)\(\frac{10100-5050}{5050}\)vì \(1+2+3+...+100=5050\)

                                                                                \(=\)   \(\frac{5050}{5050}\)\(=\)\(1\)

Ta có \(\frac{a_1-1}{100}=1\Rightarrow a_1-1=100\Rightarrow a_1=101\)

         \(\frac{a_2-2}{99}=1\Rightarrow a_2-2=99\Rightarrow a_2=101\)

         \(\frac{a_3-3}{98}=1\Rightarrow a_3-3=98\Rightarrow a_3=101\)

            \(....\)

           \(\frac{a_{100}-100}{1}=1\Rightarrow a_{100}-100=1\Rightarrow a_{100}=101\)

Vậy \(a_1=a_2=a_3=....=a_{100}=101\)

19 tháng 9 2017

Giải:

a) \(A=1+3+3^2+3^3+...+3^{99}+3^{100}\)

\(\Leftrightarrow3A=3+3^2+3^3+3^4+...+3^{100}+3^{101}\)

\(\Leftrightarrow3A-A=2A=3^{101}-1\)

\(\Leftrightarrow A=\dfrac{3^{101}-1}{2}\)

b) \(B=1-3+3^2+3^3+...+3^{99}+3^{100}\)

\(\Leftrightarrow3B=3-3^2+3^3+3^4+...+3^{100}+3^{101}\)

\(\Leftrightarrow3B-B=2B=3^{101}-1-6-18=3^{101}--25\)

\(\Leftrightarrow B=\dfrac{3^{101}-25}{2}\)

Chúc bạn học tốt!

20 tháng 9 2017

\(A=1+3+3^2+3^3+...+3^{99}+3^{100}\)

\(3A=3+3^2+3^3+3^4+...+3^{100}+3^{101}\)

\(3A-A=\left(3+3^2+3^3+3^4+...+3^{100}+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{99}\right)\)

\(2A=3^{101}-1\Leftrightarrow A=\dfrac{3^{101}-1}{2}\)

B đề sai

14 tháng 8 2019

\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)

\(A=1-\frac{1}{2^{99}}\)

7 tháng 7 2017

C= 1/100-(1/1.2+1/2.3+...+1/97.98+1/98.99+1/99.100)

C=1/100-(1-1/2+1/2-1/3+...+1/97-1/98+1/98-1/99+1/99-1/100)

C=1/100-(1-1/100)

C=1/100-99/100

C=-98/100=-49/50

7 tháng 7 2017

\(C=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(=-\left(\dfrac{1}{100.99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)+\dfrac{1}{100}\)

\(=-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)+\dfrac{1}{100}\)

\(=-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)+\dfrac{1}{100}\)

\(=-\left(1-\dfrac{1}{100}\right)+\dfrac{1}{100}\)

\(=\left(-1\right)+\dfrac{1}{50}=-\dfrac{49}{50}\)

17 tháng 2 2018

1) \(+2x+3y⋮17\)

\(\Rightarrow26x+39y⋮17\)

\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)

Mà \(17x+34y⋮17\)

\(\Rightarrow9x+5y⋮17\)

\(+9x+5y⋮17\)

\(\Rightarrow36x+20y⋮17\)

\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)

Mà \(34x+17y⋮17\)

\(\Rightarrow2x+3y⋮17\)