K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Phép trừ các phân thức đại số

Phép trừ các phân thức đại số

4 tháng 12 2019

bn ơi cho mk hỏi tại sao lại ko nhận 3 vậy !!!

14 tháng 11 2018

a,ĐKXĐ:\(x\ne2,x\ne-3\)

\(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)

\(=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x-4}{x-2}\)

c,Để A = - 3/4

thì: \(\frac{x-4}{x-2}=-\frac{3}{4}\)

\(\Leftrightarrow4\left(x-4\right)=-3\left(x-2\right)\)

\(4x-16=-3x+6\)

\(4x+3x=6+16\)

\(7x=22\)

\(x=\frac{22}{7}\)

14 tháng 11 2018

d,\(A=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=\frac{x-2}{x-2}-\frac{2}{x-2}=1-\frac{2}{x-2}\)

Để A nguyên thì: \(x-2\inƯ\left(2\right)\)

Ta có: \(Ư\left(2\right)=\left\{\pm1,\pm2\right\}\)

Xét từng TH:

_ x - 2 = -1 => x = 1

_ x - 2 = 1 => x = 3

_ x - 2 = -2 => x = 0

_ x- 2 = 2 => x= 4

Vậy: \(x\in\left\{0,1,3,4\right\}\)

=.= hok tốt!!

6 tháng 12 2016

f) Tìm x để F>0

1 tháng 6 2018

\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)

a) ĐKXĐ:

\(\begin{cases} x+3\ne 0\\ x^2+x-6 \ne 0 \Rightarrow (x+3)(x-2) \ne 0\\ 2-x\ne 0 \end{cases} \\\Leftrightarrow \begin{cases} x\ne -3\\ x\ne 2 \end{cases} \)

 

 

1 tháng 6 2018

b) Với \(x\ne-3;x\ne2\) ta có:

\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)

\(\Leftrightarrow\dfrac{x+2}{x+3}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}+\dfrac{1}{2-x}\)

\(\Leftrightarrow\dfrac{x+2}{x+3}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}-\dfrac{1}{x-2}\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}-\dfrac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(\Leftrightarrow\dfrac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{x^2-4-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{x-4}{x-2}\)

30 tháng 12 2019

\(e ) Để \)  \(M\)\(\in\)\(Z \)  \(thì\) \(1 \)\(⋮\)\(x +3\)

\(\Leftrightarrow\)\(x + 3 \)\(\in\)\(Ư\)\((1)\)\(= \) { \(\pm\)\(1 \) }

\(Lập\)  \(bảng :\)

\(x +3\)\(1\)\(- 1\)
\(x\)\(-2\)\(- 4\)

\(Vậy : Để \)  \(M\)\(\in\)\(Z\)  \(thì\) \(x\)\(\in\)\(- 4 ; - 2\) }

30 tháng 12 2019

e) Để M \(\in\)Z <=> \(\frac{1}{x+3}\in Z\)

<=> 1 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(1) = {1; -1}

Lập bảng: 

x + 31-1
  x-2-4

Vậy ....

f) Ta có: M > 0

=> \(\frac{1}{x+3}\) > 0

Do 1 > 0 => x + 3 > 0

=> x > -3

Vậy để M > 0 khi x > -3 ; x \(\ne\)3 và x \(\ne\)-3/2

10 tháng 6 2018

a, \(Đkxđ:x\ne-3;x\ne2\)

b,\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)

\(=\dfrac{x+2}{x+3}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{1}{x-2}\)

\(=\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)\(=\dfrac{x-4}{x-2}\)

c,\(A=-\dfrac{3}{4}\) khi \(\dfrac{x-4}{x-2}=-\dfrac{3}{4}\)

\(\Leftrightarrow\left(x-4\right).4=-3\left(x-2\right)\)

\(\Leftrightarrow4x-16=-3x+6\)

\(\Leftrightarrow7x=22\)

\(\Leftrightarrow x=\dfrac{22}{7}\)

Vậy khi \(x=\dfrac{22}{7}\) thì \(A=-\dfrac{3}{4}\)

10 tháng 6 2018

a) ĐKXĐ : \(\left\{{}\begin{matrix}x+3\ne0\\2-x\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne2\end{matrix}\right.\)

b) \(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}-\dfrac{1}{x-2}\)

\(A=\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x+3\right)\left(x-2\right)}\)

\(A=\dfrac{-x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\dfrac{x-4}{x-2}\)

c) Để \(A=\dfrac{-3}{4}\) thì :

\(A=\dfrac{x-4}{x-2}=\dfrac{-3}{4}\)

\(\Rightarrow\dfrac{x-4}{x-2}+\dfrac{3}{4}=0\)

\(\Rightarrow\dfrac{4\left(x-4\right)}{4\left(x-2\right)}+\dfrac{3\left(x-2\right)}{4\left(x-2\right)}=0\)

\(\Rightarrow4x-16+3x-6=0\)

\(\Rightarrow7x+22=0\)

\(\Rightarrow x=\dfrac{-22}{7}\)

d) Ta có : \(A=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}=1-\dfrac{2}{x-2}\)

\(1\in Z\) để \(A\in Z\) thì \(\dfrac{2}{x-2}\in Z\)

\(\Rightarrow x-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Có : \(\left\{{}\begin{matrix}x-2=1=>x=3\\x-2=-1=>x=1\\x-2=2=>x=4\\x-2=-2=>0\end{matrix}\right.\)

Vậy để A nhận gt nguyên thì x \(\in\left\{3;1;4;0\right\}\)

e) \(x^2-9=0\)

\(\Rightarrow\left(x+3\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(loại\right)\\x=3\end{matrix}\right.\)

Thay vào A ta có :

\(A=\dfrac{x-4}{x-2}=\dfrac{3-4}{3-2}=-1\)