\(\frac{12n+1}{30n+2}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 7 2021

Để \(\frac{12n+1}{30n+2}\)là phân số tối giản thì \(\left(12n+1,30n+2\right)=1\).

Đặt \(d=\left(12n+1,30n+2\right)\).

Ta có: 

\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)=1⋮d\)

Suy ra \(d=1\).

Do đó ta có đpcm. 

3 tháng 2 2017

Gọi d là ƯCLN(12n + 1; 30n + 2) Nên ta có :

12n + 1 ⋮ d và 30n + 2 ⋮ d

=> 5(12n + 1) ⋮ d và 2(30n + 2) ⋮ d

=> 60n + 5 ⋮ d và 60n + 4 ⋮ d

=> (60n + 5) - (60n + 4) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN(12n + 1; 30n + 2) = 1 nên (12n + 1)/(30n + 2) tối giản ( đpcm )

21 tháng 2 2018

Câu a sai đề hay sao ấy
b) Không tối giản đâu nhé, cả tử và mẫu đều chia hết cho 2

21 tháng 2 2018

bạn ơi nhưng cô giáo cho đề mk thế. bạn giải giùm mk với mai mk phải nộp rồi.

25 tháng 2 2016

Gọi d là ƯC ( 12n + 1 ; 30n + 2 )

=> 12n + 1 ⋮ d => 5.( 12n + 1 ) ⋮ d => 60n + 5 ⋮ d ( 1 )

=> 30n + 2 ⋮ d => 2.( 30n + 2 ) ⋮ d => 60n + 4 ⋮ d ( 2 )

=> [ ( 60n + 5 ) - ( 60n + 4 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯC ( 12n + 1 ; 30n + 2 ) = 1 nên 12n + 1 / 30n + 2  là p/s tối giản ( đpcm )

25 tháng 2 2016

gọi d là ước chung của 12n+1va30n+2

     =>12n+1 chia het d=>30n+5chia het d              

6 tháng 4 2017

Gọi d là UCLN của 12n +1/ 30n+2

=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d

=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d

=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d

=>(60n + 5) - (60n + 4) chia hết cho d

=> 1 chia hết cho d

=> d = 1 

=> giả sử đầu bài đúng 

=> phân số 12n+1/30n+2 là phân số tối giản (n thuộc N)

28 tháng 4 2020

Gọi d là ƯC(12n + 1 ; 30n + 2)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

=> 60n + 5 - 60n + 4 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(12n + 1; 30n + 2) = 1

=> \(\frac{12n+1}{30n+2}\)tối giản ( đpcm )_

5 tháng 2 2016

Gọi d là ƯCLN(12n+1, 30n+2)

=> 12n+1 chia hết cho d, 30n+2 chia hết cho d

=> 5(12n+1) chia hết cho d, 2(30n+2) chia hết cho d

=> 5(12n+1) - 2(30n+2) chia hết cho d

=> 60n + 5 - 60n - 4 = 1 chia hết cho d

=> d = 1

 

Vậy phân số trên tối giản.

 

5 tháng 2 2016

bỏ n đi ta có 12+1/30+2=12/30+1/2=2/5+1/2=9/10

vay 9/10 la phan so toi gian

13 tháng 2 2017

Gọi ƯCLN(12n + 1,30n + 2) = d

Ta có: \(12n+1⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow60n+5⋮d\)

\(30n+2⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow60n+4⋮d\)

=> 60n + 5 - (60n + 4) \(⋮\) d

=> 60n + 5 - 60n - 4 \(⋮\) d

=> 1 \(⋮\) d => d = 1

=> \(\frac{12n+1}{30n+2}\) là phân số tối giản

13 tháng 2 2017

Đặt (12n+1, 30n+2) = d

\(\Rightarrow\) \(\left\{\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\) \(\Rightarrow\)\(\left\{\begin{matrix}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\) ( 60n + 5) - (60n +4) \(⋮\) d

\(\Rightarrow\) 5 - 1 \(⋮\) d

\(\Rightarrow\) 1 \(⋮\) d

\(\Rightarrow\) d = 1

Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản.

Ta có \(\frac{12n+1}{30n+2}\), gọi ƯCLN của 12n + 1 và 30n + 2 là d

Suy ra

( 12n + 1 ) . 5 = 60n + 5 chia hết cho d

( 30n + 2 ) . 2 = 60n + 4 chia hết cho d

Suy ra [ ( 60n + 5 ) - ( 60n + 4 ) ] chia hết cho d

Suy ra 1 chia hết cho d

Nên d = 1

Suy ra ( 12n + 1 ) và ( 30n + 2 ) Nguyên tố cùng nhau

Suy ra\(\frac{12n+1}{30n+2}\)là phân số tối giản

26 tháng 6 2019

bạn tham khảo ở đây nhé https://olm.vn/hoi-dap/detail/106703156221.html

Mà bạn biết kết quả rồi còn gì cỏ phải tự hỏi tự trl ko 

Mak đây là nick phụ của bn mak hay vậy 

23 tháng 5 2017

Gọi ƯCLN (12n+1,30n+2) là d

\(\Rightarrow\left(12n+1\right)⋮d\)

\(\left(30n+2\right)⋮d\)

\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

Vậy ƯCLN \(\left(12n+1,30n+2\right)=1\Leftrightarrow\dfrac{12n+1}{30n+2}\) là p/s tối giản \(\left(dpcm\right)\)

23 tháng 5 2017

Gọi ước chung lớn nhất của 12n+1 và 30n+ 2 là d

\(\Rightarrow\) ( 12n+1) \(⋮\) d và ( 30n+2 ) \(⋮\) d

\(\Rightarrow\) \(\left[5\left(12n+1\right)-2\left(30n+2\right)\right]⋮d\)

\(\Leftrightarrow\) ( 60n + 5 - 60n - 4 ) \(⋮d\)

\(\Leftrightarrow\) 1 \(⋮\) d hay d= 1

Vậy ước chung lớn nhất của 12n+ 1 và 30n+2 là 1 hay \(\dfrac{12n+1}{30n+2}\) là phân số tối giản .