K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2021

Dùng CT: \(sin\left(a+b\right)=sina.cosb+cosa.sinb\)

\(y=\sqrt{3}sin2x-cos2x\)

\(=2\left(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x\right)\)

\(=2\left(cos\dfrac{\pi}{6}.sin2x-sin\dfrac{\pi}{6}.cos2x\right)\)

\(=2sin\left(2x-\dfrac{\pi}{6}\right)\)

NV
19 tháng 12 2020

Số số thỏa mãn: \(\dfrac{9!}{5!}=3024\) số

(Đây là loại hoán vị lặp)

 

19 tháng 12 2020

Cảm bạn

NV
10 tháng 4 2022

Số số nguyên dương chia hết cho 7 là: \(S_1=\dfrac{994-7}{7}+1=142\)

Số số vừa chia hết cho 7 vừa chia hết cho 5 (nghĩa là chia hết 35): \(S_2=\dfrac{980-35}{35}+1=28\)

Số số vừa chia hết cho 7 vừa chia hết cho 2: \(S_3=\dfrac{994-14}{14}+1=71\)

Số số chia hết cho cả 7;2;5 là: \(S_4=\dfrac{980-70}{70}+1=14\)

Số số thỏa mãn yêu cầu đề bài: \(S_1+S_4-\left(S_2+S_3\right)=57\)

NV
27 tháng 2 2023

Có 3 loại hình thức nhận thưởng: sách+sổ, sách+bút, sổ+bút

Gọi số học sinh nhận được phần thưởng thuộc 3 loại nói trên lần lượt là x;y;z

\(\Rightarrow\left\{{}\begin{matrix}x+y=9\\x+z=8\\y+z=11\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=5\end{matrix}\right.\)

Hay chúng ta có 3 bạn nhận thưởng sách+sổ, 6 bạn nhận sách+bút, 5 bạn nhận sổ+bút

Như vậy có 3 TH để An và Bình nhận thưởng giống nhau là:

- An Bình cùng nhận sách sổ: còn lại 12 bạn, chọn 6 bạn nhận sách bút có \(C_{12}^6\) sách, còn lại 6 bạn, chọn 5 bạn nhận sổ bút có \(C_6^5\) cách, còn 1 bạn, chọn 1 bạn nhận sách sổ có \(C_1^1\) cách \(\Rightarrow C_{12}^6.C_6^5.C_1^1\) cách

- An Bình nhận sách bút: tương tự như trên ta có \(C_{12}^3.C_9^4.C_5^5\) cách

- An Bình nhận bút sổ: \(C_{12}^3.C_9^6.C_3^3\) cách

Tổng: \(51744\) cách

27 tháng 2 2023

Gọi a là số học sinh nhận được sách và sổ ; b là số học sinh nhận được sách và bút ; c là số học sinh nhận được sổ và bút. Ta có : \(a+b=9,a+c=8,b+c=11\)

Giải ra ta được \(a=3,b=6,c=5\)

Xét ba trường hợp sau : TH 1 : An và Bình cùng nhận được sách và sổ. Có 3 người cùng nhận được sách và sổ, trong đó có An và Bình. Vì vậy cần chọn ra 1 người trong só 12 học sinh để nhận sách và sổ suy ra có \(C_{12}^1\) cách chọn. Sau đó chọn ra 6 em trong số 11 học sinh còn lại để nhận sách và bút và 5 học sinh còn lại nhận sổ và bút. Vậy số kết quả trong TH này là: \(C_{12}^1.C^6_{12}\)

TH 2 : An và Bình cùng nhận được sách và bút. Lập luận tương tự TH 1 ta có số kết quả trong TH này là : \(C_{12}^4.C_8^3\)

TH 3 : An và Bình cùng nhận được sổ và bút. Số kết quả trong TH này là :\(C_{12}^3.C_9^3\). . Vậy có: \(C_{12}^1.C_{12}^6+C_{12}^4.C_8^3+C_{12}^3.C_9^3=51744\) cách phát phần thưởng thỏa mãn bài toán. 

Đáp án: \(51744\) 

24 tháng 10 2016

Nếu mà không quá 1 em nữ => Không có em nữ nào tham gia.

=> 5 em trên là 5 em nam và chỉ có 1 cách chọn.

24 tháng 10 2016

sai rồi bn ạ

16 tháng 12 2019

Đáp án D

Tổng số cách chọn 8 em từ đội 18 người là tUWPgxywIzS7.png 

Số cách chọn 8 em từ khối 12 và khối 11 là DycLqkhxh8N3.png

Số cách chọn 8 em từ khối 11 và khối 10 là e9m6li6ERnkE.png

Số cách chọn 8 em từ khối 10 và khối 12 là OsJOO5eaALdg.png

Vậy số cách chọn để có các em ở cả 3 khối là

bliKgd7EReuj.png

NV
30 tháng 7 2021

- Mọi số nguyên n đều có số đối của nó là -n

- Do đó, trong biểu thức \(k2\pi\) nếu em thay k bằng số đối của nó là -k thì ta được \(-k2\pi\) thôi

8 tháng 8 2021

Điều kiện là k nguyên nhưng em thấy có vài phân số thay vào với k2pi và trừ k2pi thì hai điểm này vẫn cùng điểm biểu diễn... Tại sao vậy ạ ??