Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(b=xa;c=ya\Rightarrow a^2+2x^2a^2\le3y^2a^2\Leftrightarrow1+2x^2\le3y^2\)
Ta cần chứng minh:\(\frac{1}{a}+\frac{2}{xa}\ge\frac{3}{ya}\Leftrightarrow1+\frac{2}{x}\ge\frac{3}{y}\)
Vậy ta viết được bài toán thành dạng đơn giản hơn:
Cho x, y > 0 thỏa mãn \(1+2x^2\le3y^2\). Chứng minh:\(1+\frac{2}{x}\ge\frac{3}{y}\)
Tối về em suy nghĩ tiếp ạ!
Thì bạn cứ biết là áp dụng bđt
\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{\left(1+2\right)^2}{a+2b}=\frac{9}{a+2b}\) ( BĐT Schwarz )
Ta cần cm \(a+2b\le3c\)
\(\left(a+2b\right)^2=\left(1\cdot a+\sqrt{2}\cdot b\cdot\sqrt{2}\right)^2\le\left(1^2+\left(\sqrt{2}\right)^2\right)\left(a^2+2b^2\right)=3\left(a^2+2b^2\right)\le3.3c^2=9c^2\)( BUN nhiacopxki )
<=> \(\sqrt{\left(a+2b\right)^2}\le\sqrt{9c^2}\Leftrightarrow a+2b\le3c\) ( XONG )
Dấu '' = '' xảy ra khi a = b = c
1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)
\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)
(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c
2) Áp dụng kết quả phần 1 ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :
\(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}=\frac{9}{3a}+\frac{4}{2b}+\frac{1}{c}\ge\frac{\left(3+2+1\right)^2}{3a+2b+c}=\frac{36}{3a+2b+c}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b=c
Trước hết, ta chứng minh được \(\forall m,n,p\in R;x,y,z>0\)thì:
\(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\left(1\right)\)
Dấu bằng xảy ra \(\Leftrightarrow\frac{m}{x}=\frac{n}{y}=\frac{p}{z}\)
Thật vậy: \(\forall m,n\in R;x,y>0\)thì:
\(\frac{m^2}{x}+\frac{n^2}{y}\ge\frac{\left(m+n\right)^2}{x+y}\left(2\right)\)
\(\Leftrightarrow\frac{m^2y}{xy}+\frac{n^2x}{xy}\ge\frac{\left(m+n\right)^2}{x+y}\)
\(\Leftrightarrow\left(m^2y+n^2x\right)\left(x+y\right)\ge xy\left(m+n\right)^2\)
\(\Leftrightarrow m^2xy+m^2y^2+n^2x^2+n^2xy\ge xy\left(m^2+2mn+m^2\right)\)
\(\Leftrightarrow m^2xy+n^2xy+m^2y^2+n^2x^2\ge m^2xy+2mnxy+n^2xy\)
\(\Leftrightarrow m^2xy+n^2xy+m^2y^2+n^2x^2-m^2xy-2mnxy-n^2xy\ge0\)
\(\Leftrightarrow m^2y^2-2mnxy+n^2x^2\ge0\)
\(\Leftrightarrow\left(my-nx\right)^2\ge0\)(luôn đúng).
Dấu bằng xảy ra \(\Leftrightarrow\frac{m}{x}=\frac{n}{y}\)
Áp dụng bất dẳng thức (2), ta được:
\(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n\right)^2}{x+y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\forall m,n,p\in R;x,y,z>0\)
Dấu bằng xảy ra \(\Leftrightarrow\frac{m}{x}=\frac{n}{y}=\frac{p}{z}\)
Theo đề bài, vì \(a,b,c>0\)nên áp dụng bất đẳng thức (1), ta được:
\(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}=\frac{3^2}{3a}+\frac{2^2}{2b}+\frac{1^2}{c}\ge\frac{\left(3+2+1\right)^2}{3a+2b+c}\)
\(\Leftrightarrow\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{6^2}{3a+2b+c}=\frac{36}{3a+2b+c}\)(điều phải chứng minh).
Dấu bằng xảy ra.
\(\Leftrightarrow\frac{3}{a}=\frac{2}{b}=\frac{1}{c}\Leftrightarrow6a=9b=18c\)
Vậy với \(a,b,c>0\)thì \(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{36}{3a+2b+c}\)
1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^2-xy+y^2\) (do x+y=1)
\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)
Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)
Vậy \(x^3+y^3\ge\dfrac{1}{4}\)
2.
a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))
Đẳng thức xảy ra \(\Leftrightarrow a=b\)
b) Lần trước mk giải rồi nhá
3.
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)
b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)
\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)
Ta có: \(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\) và \(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge2\left(a+b+c+ab+bc+ca\right)=12\)
\(\Rightarrow a^2+b^2+c^2\ge3\left(1\right)\)
Ta lại có:
\(\left\{{}\begin{matrix}\dfrac{a^3}{b}+ab\ge2a^2\\\dfrac{b^3}{c}+bc\ge2b^2\\\dfrac{c^3}{a}+ca\ge2c^2\end{matrix}\right.\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-ab-bc-ca\ge a^2+b^2+c^2\left(2\right)\)
Từ (1) và (2) \(\RightarrowĐPCM\)
Câu 3. Dự đoán dấu "=" khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Dùng phương pháp chọn điểm rơi thôi :)
LG
Áp dụng bđt Cô-si được \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow1\ge3\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow\frac{1}{3}\ge\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow\frac{1}{27}\ge a^2b^2c^2\)
\(\Rightarrow\frac{1}{\sqrt{27}}\ge abc\)
Khi đó :\(B=a+b+c+\frac{1}{abc}\)
\(=a+b+c+\frac{1}{9abc}+\frac{8}{9abc}\)
\(\ge4\sqrt[4]{abc.\frac{1}{9abc}}+\frac{8}{9.\frac{1}{\sqrt{27}}}\)
\(=4\sqrt[4]{\frac{1}{9}}+\frac{8\sqrt{27}}{9}=\frac{4}{\sqrt[4]{9}}+\frac{8}{\sqrt{3}}=\frac{4}{\sqrt{3}}+\frac{8}{\sqrt{3}}=\frac{12}{\sqrt{3}}=4\sqrt{3}\)
Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
Vậy .........
2, \(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
\(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
\(A=\left[\frac{a^2}{b+c}+\frac{\left(b+c\right)}{4}\right]+\left[\frac{b^2}{a+c}+\frac{\left(a+c\right)}{4}\right]+\left[\frac{c^2}{a+b}+\frac{\left(a+b\right)}{4}\right]-\frac{\left(a+b+c\right)}{2}\)
Áp dụng BĐT AM-GM ta có:
\(A\ge2.\sqrt{\frac{a^2}{4}}+2.\sqrt{\frac{b^2}{4}}+2.\sqrt{\frac{c^2}{4}}-\frac{\left(a+b+c\right)}{2}\)
\(A\ge a+b+c-\frac{6}{2}\)
\(A\ge6-3\)
\(A\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)\(\frac{a^2}{b+c}=\frac{b+c}{4}\Leftrightarrow4a^2=\left(b+c\right)^2\Leftrightarrow2a=b+c\)(1)
\(\frac{b^2}{a+c}=\frac{a+c}{4}\Leftrightarrow4b^2=\left(a+c\right)^2\Leftrightarrow2b=a+c\)(2)
\(\frac{c^2}{a+b}=\frac{a+b}{4}\Leftrightarrow4c^2=\left(a+b\right)^2\Leftrightarrow2c=a+b\)(3)
Lấy \(\left(1\right)-\left(3\right)\)ta có:
\(2a-2c=c+b-a-b=c-a\)
\(\Rightarrow2a-2c-c+a=0\)
\(\Leftrightarrow3.\left(a-c\right)=0\)
\(\Leftrightarrow a-c=0\Leftrightarrow a=c\)
Chứng minh tương tự ta có: \(\hept{\begin{cases}b=c\\a=b\end{cases}}\)
\(\Rightarrow a=b=c=2\)
Vậy \(A_{min}=3\Leftrightarrow a=b=c=2\)