Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x_1=k_1\frac{\text{λ}_1D}{a}\)
\(x_2=k_2\frac{\text{λ}_2D}{a}\)
vân sáng của hai bức xạ bằng nhau \(\Leftrightarrow x_1=x_2\)
\(\Rightarrow\frac{k_1}{k_2}=\frac{\text{λ}_1}{\text{λ}_2}\Rightarrow\text{λ}_2=\frac{k_1\text{λ}_1}{k_2}=\frac{2.0,603}{3}=\text{0,402μm}\)
----> chọn A
Khoảng vân ứng với bước sóng \(\lambda\) là:
\(i=\lambda\frac{D}{d}=k\lambda\) (với \(k=\frac{D}{d}\))
Vân sáng trung tâm là cực đại chung của cả 3 bước sóng.
Cực đại chung gần nhất ứng với khoảng cách là bội chung nhỏ nhất của 3 khoảng vân.
Để đơn giản, ta tìm bội chung nhỏ nhất của 42, 56, 63. Mình sẽ hướng dẫn luôn.
Trước hết phân tích thành tích các số nguyên tố:
\(\text{42=7×2×3 }\)
\(56=7\text{×}2^3\)
\(63=7\text{×}3^2\)
Bội chung nhỏ nhất là: \(7\text{×}2^3\text{×}3^2=504\)
Vậy khoảng giữa 2 vân sáng liên tiếp có màu giống màu vân trung tâm là:\(d=5,04k\left(m\right)\)
Bội chung nhỏ nhất giữa 42 và 56 là: \(\text{7×}2^3\text{×}3=168\)
Suy ra trong khoảng \(d\) có 2 vân sáng là : \(\lambda_1\) và \(\lambda_2\) trùng nhau
Bội chung nhỏ nhất giữa 42 và 63 là: \(7\text{×}2\text{×}3^2=126\)
Suy ra trong khoảng \(d\)có 3 vân sáng là \(\lambda_1\) và \(\lambda_3\) trùng nhau.
Bội chung nhỏ nhất giữa 56 và 63 là: \(7\text{×}2^3\text{×}3^2=504\)
Suy ra trong khoảng \(d\) có 0 vân sáng là \(\lambda_2\) và \(\lambda_3\) trùng nhau.
Vậy tổng số vân sáng bên trong khoảng d là:
\(\frac{d}{i_1}-1+\frac{d}{i_2}-1+\frac{d}{i_3}-1-2-3-0\)
\(=\frac{504}{42}-1+\frac{504}{56}-1+\frac{504}{63}-1-2-3-0\)
\(=21\) (vân sáng )
----> chọn A
ta có:
\(i_1:i_2:i_3=\lambda_1:\lambda_2:\lambda_3=6:8:9\)
Bội chung nhỏ nhất là 72
Như vậy vân 12 của bức xạ 1 trùng với 9 của bx2 và 8 của bx3
trong khoảng này thì bx2 và và bx3 không trùng cực đại vì 8 và 9 nguyên tố cùng nhau
cực đại số 4 và số 8 của bx1 trùng với cực đại số 3 và 6 của bx2
cực đại số 3 ,6 và số 9 của bx1 trùng với cực đại số 2; 4và 6 của bx2
Số cực đại nhìn thấy là
11+8+7-2-3=21
\(\rightarrow chọn.A\)
\(x_s= k\frac{\lambda D}{a}.\)
\(d_2-d_1 = \frac{x_sa}{D}= k\lambda\)
=>\(k= \frac{d_2-d_1}{\lambda}=\frac{1,5.10^{-6}}{\lambda}.(1)\)
Thay các giá trị của bước sóng \(\lambda\)1, \(\lambda\)2,\(\lambda\)3 vào biểu thức (1) làm sao mà ra số nguyên thì đó chính là vân sáng của bước sóng đó.
Năng lượng của nguyên tử ở trạng thái dừng \(n\):
\(E_n =-\frac{13,6}{n^2}.(eV)\)
Electron nhảy từ P (n=6) về K (n=1): \(hf_1 = E_6-E_1.(1)\)
Electron nhảy từ P (n=6) về L (n=2): \(hf_2 = E_6-E_2.(2)\)
Electron nhảy từ L (n=2) về K (n=1): \(hf_6 = E_2-E_1.(3)\)
Lấy (1) trừ đi (2), so sánh với (3) ta được : \(hf_1 -hf_2 = hf_3\)
=> \(f_3=f_1 -f_2.\)
\(\lambda\) là bước sóng của bức xạ trong chân không.
\(\lambda' =\frac{\lambda}{n}=0,5 \mu m. \)
Ta có: \(\left(\frac{v}{x}\right)'=\frac{v^2-ax}{v^2}\)
Mà: \(a=-\omega^2x\) nên \(\left(\frac{v}{x}\right)'=1+\frac{\omega^2x}{v^2}=1+\frac{x^2}{\frac{v^2}{\omega^2}}=1+\frac{x^2}{A^2-x^2}\)
Đạo hàm 2 vế biểu thức đã cho ta có:
\(1+\frac{x_1^2}{A^2-x_1^2}+1+\frac{x_2^2}{A^2-x_2^2}=1+\frac{x_3^2}{A^2-x_3^2}\)
Thay số vào ta tìm đc giá trị \(x_0\)
Chọn C.
Thân thể con người bình thường chỉ có thể phát ra được tia hồng ngoại.