Thân thể con người bình thường có thể phát ra được bức xạ nào dưới đây?

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

Hỏi đáp Vật lý

22 tháng 10 2016

chịu

23 tháng 1 2016

l1

23 tháng 1 2016

Câu hỏi của Lưu Thùy Dung - Học và thi online với HOC24

1 tháng 2 2016

\(x_1=k_1\frac{\text{λ}_1D}{a}\)

\(x_2=k_2\frac{\text{λ}_2D}{a}\)

vân sáng của hai bức xạ bằng nhau \(\Leftrightarrow x_1=x_2\)

\(\Rightarrow\frac{k_1}{k_2}=\frac{\text{λ}_1}{\text{λ}_2}\Rightarrow\text{λ}_2=\frac{k_1\text{λ}_1}{k_2}=\frac{2.0,603}{3}=\text{0,402μm}\)

 

----> chọn A

4 tháng 2 2016

a

3 tháng 2 2016

Khoảng vân ứng với bước sóng \(\lambda\) là:

\(i=\lambda\frac{D}{d}=k\lambda\)  (với \(k=\frac{D}{d}\))

Vân sáng trung tâm là cực đại chung của cả 3 bước sóng.
Cực đại chung gần nhất ứng với khoảng cách là bội chung nhỏ nhất của 3 khoảng vân.

Để đơn giản, ta tìm bội chung nhỏ nhất của 42, 56, 63. Mình sẽ hướng dẫn luôn.
Trước hết phân tích thành tích các số nguyên tố: 

\(\text{42=7×2×3 }\)

\(56=7\text{×}2^3\)

\(63=7\text{×}3^2\)

Bội chung nhỏ nhất là: \(7\text{×}2^3\text{×}3^2=504\)  

Vậy khoảng giữa 2 vân sáng liên tiếp có màu giống màu vân trung tâm là:\(d=5,04k\left(m\right)\)

Bội chung nhỏ nhất giữa 42 và 56 là: \(\text{7×}2^3\text{×}3=168\)

Suy ra trong khoảng \(d\) có 2 vân sáng là : \(\lambda_1\) và \(\lambda_2\) trùng nhau

Bội chung nhỏ nhất giữa 42 và 63 là: \(7\text{×}2\text{×}3^2=126\)

Suy ra trong khoảng \(d\)có 3 vân sáng là \(\lambda_1\) và \(\lambda_3\) trùng nhau.

Bội chung nhỏ nhất giữa 56 và 63 là: \(7\text{×}2^3\text{×}3^2=504\)

Suy ra trong khoảng \(d\) có 0 vân sáng là \(\lambda_2\) và \(\lambda_3\) trùng nhau.

Vậy tổng số vân sáng bên trong khoảng d là:

\(\frac{d}{i_1}-1+\frac{d}{i_2}-1+\frac{d}{i_3}-1-2-3-0\)

\(=\frac{504}{42}-1+\frac{504}{56}-1+\frac{504}{63}-1-2-3-0\)

\(=21\) (vân sáng )

 

----> chọn A

3 tháng 2 2016

ta có: 

\(i_1:i_2:i_3=\lambda_1:\lambda_2:\lambda_3=6:8:9\)

Bội chung nhỏ nhất là 72

Như vậy vân 12 của bức xạ 1 trùng với 9 của bx2 và 8 của bx3 

trong khoảng này thì bx2 và và bx3 không trùng cực đại vì 8 và 9 nguyên tố cùng nhau

cực đại số 4 và số 8 của bx1 trùng với cực đại số 3 và 6 của bx2

cực đại số 3 ,6 và số 9 của bx1 trùng với cực đại số 2;  4và  6 của bx2 

Số cực đại nhìn thấy là

11+8+7-2-3=21 

 

\(\rightarrow chọn.A\)

11 tháng 1 2016

     \(x_s= k\frac{\lambda D}{a}.\) 
     \(d_2-d_1 = \frac{x_sa}{D}= k\lambda\)

=>\(k= \frac{d_2-d_1}{\lambda}=\frac{1,5.10^{-6}}{\lambda}.(1)\)

Thay các giá trị của bước sóng \(\lambda\)1, \(\lambda\)2,\(\lambda\)3 vào biểu thức (1) làm sao mà ra số nguyên thì đó chính là vân sáng của bước sóng đó.

\(\frac{1,5.10^{-6}}{750.10^{-9}}=2.\)(chọn)
\(\frac{1,5.10^{-6}}{675.10^{-9}}=2,222.\)(loại)
\(\frac{1,5.10^{-6}}{600.10^{-9}}=2,5.\)(loại)
 
 

 

17 tháng 3 2016

Năng lượng của nguyên tử ở trạng thái dừng \(n\)

\(E_n =-\frac{13,6}{n^2}.(eV)\)

Electron nhảy từ P (n=6) về K (n=1): \(hf_1 = E_6-E_1.(1)\)

Electron nhảy từ P (n=6) về L (n=2): \(hf_2 = E_6-E_2.(2)\)

Electron nhảy từ L (n=2) về K (n=1): \(hf_6 = E_2-E_1.(3)\)

Lấy (1) trừ đi (2), so sánh với (3) ta được : \(hf_1 -hf_2 = hf_3\) 

                                                              =>    \(f_3=f_1 -f_2.\)

23 tháng 1 2016

\(\lambda\) là bước sóng của bức xạ trong chân không.
\(\lambda' =\frac{\lambda}{n}=0,5 \mu m. \)

12 tháng 5 2015

Ta có: \(\left(\frac{v}{x}\right)'=\frac{v^2-ax}{v^2}\)

Mà: \(a=-\omega^2x\) nên \(\left(\frac{v}{x}\right)'=1+\frac{\omega^2x}{v^2}=1+\frac{x^2}{\frac{v^2}{\omega^2}}=1+\frac{x^2}{A^2-x^2}\)

Đạo hàm 2 vế biểu thức đã cho ta có:

\(1+\frac{x_1^2}{A^2-x_1^2}+1+\frac{x_2^2}{A^2-x_2^2}=1+\frac{x_3^2}{A^2-x_3^2}\)

Thay số vào ta tìm đc giá trị \(x_0\)

7 tháng 12 2015

 Em hiểu thế này có đúng không ạ? Tại em biến đổi phương trình đầu tiên của nhưng mà không có ra?

\((\frac{x}{v})' = \frac{x'.v - v'.x}{v^2}= \frac{v^2-ax}{v^2}\)

 hay là 

\((\frac{v}{x})'= \frac{ax - x^2}{v^2}\)