Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 , \(x^5+x^4+1=\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
= \(x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)=\(\left(x^2+x+1\right)\left(x^3-x+1\right)\)
2 , \(x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128=\left(x^2+10x\right)\left(x^2+10x+24\right)+128\)(*)
Đặt x2 + 10 = a , a>0 (1)
=> (*) <=> a(a+24)+128=a2 + 24a+128=(a+8)(a+16) (**)
Thay (1) vào (**) ta được :
(*) <=> \(\left(x^2+10+8\right)\left(x^2+10+16\right)\)
\(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4+1\right)^2-x^4\)
\(=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(=\left(x^4-x^2+1\right)\left(x^4+2x^2-x^2+1\right)\)
\(=\left(x^4-x^2+1\right)[\left(x^2+1\right)^2-x^2]\)
\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)
a) \(\frac{x+1}{2x+6}\)+\(\frac{2x+3}{x\left(x+3\right)}\)
= \(\frac{x+1}{2\left(x+3\right)}\)+ \(\frac{2x+3}{x\left(x+3\right)}\)
= \(\frac{x\left(x+1\right)}{2x\left(x+3\right)}\)+ \(\frac{2\left(2x+3\right)}{2x\left(x+3\right)}\)
= \(\frac{x^2+x+4x+6}{2x\left(x+3\right)}\)
= \(\frac{x^2+5x+6}{2x\left(x+3\right)}\)
= \(\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}\)
= \(\frac{x+2}{2x}\)
b) \(\frac{x-1}{x}\)+ \(\frac{x+2}{2}\)
= \(\frac{2\left(x-1\right)}{2x}\)+ \(\frac{x\left(x+2\right)}{2x}\)
= \(\frac{2x-2+x^2+2x}{2x}\)
= \(\frac{x^2+4x-2}{2x}\)
c) \(\frac{1}{x+y}\)+ \(\frac{-1}{x-y}\)+ \(\frac{2x}{x^2+y^2}\)
= \(\frac{\left(x-y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)}\)+\(\frac{-\left(x+y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)}\)+ \(\frac{2x\left(x-y\right)\left(x+y\right)}{\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)}\)
= \(\frac{x^3+xy^2-x^2y-y^3-x^3-xy^2-xy^2-y^3+2x^3+2x^2y-2x^2y+2xy^2}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)
= \(\frac{2x^3+xy^2-x^2y-2y^3}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)
= \(\frac{\left(2x^3-2y^3\right)-\left(x^2y-xy^2\right)}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)
= \(\frac{2\left(x-y\right)\left(x^2+xy+y^2\right)-xy\left(x-y\right)}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)
= \(\frac{\left(x-y\right)\left(2x^2+2xy+2y^2-xy\right)}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)
= \(\frac{2x^2+xy+2y^2}{\left(x+y\right)\left(x^2+y^2\right)}\)
e) = \(\frac{3x^2-6xy+3y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
= \(\frac{3\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
=\(\frac{3x-3y}{x^2+xy+y^2}\)
( Mình bận rồi, lát làm câu d nhé)
Xét các biểu thức :
\(x^3+y^3+z^3=x^3+y^3+\left(-x-y\right)^3=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)\left(-3xy\right)=-3xy.\left(-z\right)=3xyz\)
\(x^2+y^2+z^2=x^2+y^2+\left(-x-y\right)^2=2\left(x^2+y^2+xy\right)\)
Do đó VT có giá trị là \(5.\left(3xyz\right).2\left(x^2+y^2+xy\right)=30xyz\left(x^2+y^2+xy\right)\)
Xét VP:
\(x^5+y^5+z^5=\left(x^5+y^5\right)+\left(-x-y\right)^5\)
\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)
\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy.\left[\left(x+y\right)^3-xy\left(x+y\right)\right]\)
\(=-5xy\left(x+y\right)\left(x^2+2xy+y^2-xy\right)\)
\(=5xyz\left(x^2+xy+y^2\right)\)
Do đó VP là \(30xyz\left(x^2+y^2+xy\right)\)
Suy ra điều phải chứng minh.