\(T=\frac{x}{ax-2a^2}-\frac{2}{x^2+\left(1-2a\right)x-2a}\left(1+\frac{x^2+3x}{x+3}\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

phân tích ta được T=\(\frac{1}{a}\)

suy ra với a=1 hoặc a=-1 thi với mọi x thì t=a.

Nếu a<>1 va a<>-1 thì ko có x.

30 tháng 9 2019

\(x^2-x-1=0\)

<=> \(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}=0\)

<=> \(\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)

<=> \(\left[{}\begin{matrix}x-\frac{1}{2}=\frac{\sqrt{5}}{2}\\x-\frac{1}{2}=-\frac{\sqrt{5}}{2}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\frac{\sqrt{5}+1}{2}>0\\x=\frac{1-\sqrt{5}}{2}< 0\end{matrix}\right.\)

Do a là nghiệm nguyên âm của pt \(x^2-x-1=0\)

=> a= \(\frac{1-\sqrt{5}}{2}\)

<=> \(2-a=2-\frac{1-\sqrt{5}}{2}=\frac{4-1+\sqrt{5}}{2}=\frac{3+\sqrt{5}}{2}=\frac{6+2\sqrt{5}}{4}=\frac{5+2\sqrt{5}+1}{4}\)

<=> 2-a= \(\frac{\left(\sqrt{5}+1\right)^2}{4}>0\) => \(\sqrt{2-a}=\sqrt{\frac{\left(\sqrt{5}+1\right)^2}{4}}=\left|\frac{\sqrt{5}+1}{2}\right|=\frac{\sqrt{5}+1}{2}\) (1)

\(5+8a=5+8.\frac{1-\sqrt{5}}{2}=5+4\left(1-\sqrt{5}\right)=5+4-4\sqrt{5}=5-2.2\sqrt{5}+4=\left(\sqrt{5}-2\right)^2\)

<=> \(\sqrt[3]{5+8a}=\sqrt[3]{\left(\sqrt{5}-2\right)^2}\)(2)

Từ (1) ,(2)=> \(A=\frac{\sqrt{5}+1}{2}+\sqrt[3]{\left(\sqrt{5}-2\right)^2}\)( đến đây k biết đề có sai k ,nếu k sai thì giải nốt nha,chỉ bít làm đến đây thôi :))

30 tháng 9 2019

@tth

NV
15 tháng 10 2019

\(A^3=x^3-3x+3A\sqrt[3]{\frac{\left(x^3-3x\right)^2-\left(x^2-1\right)^2\left(x^2-4\right)}{4}}\)

\(A^3=x^3-3x+3A\sqrt[3]{\frac{x^6-6x^4+9x^2-\left(x^6-6x^4+9x^2-4\right)}{4}}\)

\(A^3=x^3-3x+3A\)

\(A^3-x^3-3\left(A-x\right)=0\)

\(\left(A-x\right)\left(A^2+x^2+Ax-3\right)=0\)

\(\Rightarrow A=x\) (do \(\left\{{}\begin{matrix}A>0\\x\ge2\end{matrix}\right.\) \(\Rightarrow x^2-3>0\Rightarrow A^2+x^2+Ax-3>0\))

2/ \(a+1=\sqrt{17}\Rightarrow a^2+2a+1=17\Rightarrow a^2+2a-17=-1\)

\(P=\left[a^3\left(a^2+2a-17\right)-a^2+18a-17\right]^{2018}\)

\(=\left(-a^3-a^2+18a-17\right)^{2018}\)

\(=\left(-a\left(a^2+2a-17\right)+a^2+a-17\right)^{2018}\)

\(=\left(a^2+2a-17\right)^{2018}\)

\(=\left(-1\right)^{2018}=1\)

NV
17 tháng 11 2019

Câu 1: \(P=\sum\frac{1}{\left(1+\frac{1}{x}\right)^2}\) đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)

Nó chính là dòng 5 trở đi của bài 4 này, ko làm lại nữa nhé:

Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến

Câu 2:

\(\frac{a^3}{\left(a^2+b^2+a^2\right)\left(a^2+a^2+c^2\right)}\le\frac{a^3}{\left(a^2+ab+ac\right)^2}=\frac{a}{\left(a+b+c\right)^2}\)

Tương tự, cộng lại và rút gọn sẽ có đpcm

17 tháng 11 2019

Vũ Minh Tuấn, Băng Băng 2k6, Phạm Lan Hương, Pumpkin Night, No choice teen, HISINOMA KINIMADO,

tth, Nguyễn Lê Phước Thịnh, Chu Tuấn Minh, Lê Thị Hồng Vân, @Trần Thanh Phương, @Nguyễn Việt Lâm,

@Akai Haruma

giúp e vs ạ! thanks trước