\(T=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b-c\right)\left(b+c\right)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2018

ta có: \(T=\frac{a^2}{\left(a-b\right).\left(a+b\right)-c^2}+\frac{b^2}{\left(b-c\right).\left(b+c\right)-a^2}+\frac{c^2}{\left(c-a\right).\left(c+a\right)-b^2}\)

\(T=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)

mà a + b + c = 0 => b + c = -a => b2 + 2bc + c2 = a => a2 - b2 - c2 = 2bc

tương tự như trên, ta có: b2  - c2 - a2 = 2ac; c2 - a2 - b2 = 2ab

\(\Rightarrow T=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Lại có: a+b+c = 0 => a3 + b3 + c3 = 3abc

\(\Rightarrow T=\frac{3abc}{2abc}=\frac{3}{2}\)

6 tháng 11 2016

\(a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+c^2+2bc\Leftrightarrow a^2-b^2-c^2=2bc\)

Tương tự : \(b^2-a^2-c^2=2ac\) ; \(c^2-a^2-b^2=2ab\)

Ta có : \(T=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}=\frac{a^2}{2bc}+\frac{b^2}{2ca}+\frac{c^2}{2ab}\)

\(=\frac{1}{2abc}\left(a^3+b^3+c^3\right)\)(1)

Ta sẽ chứng minh nếu a + b + c = 0 thì \(a^3+b^3+c^3=3abc\)

Ta có \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

= 0

=> \(a^3+b^3+c^3=3abc\) thay vào (1) được : 

\(T=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

2 tháng 11 2019

a) A = \(\frac{a}{\left(a-b\right)\left(a-c\right)}+\frac{b}{\left(b-a\right)\left(b-c\right)}+\frac{c}{\left(c-a\right)\left(c-b\right)}\)

=> A = \(\frac{a}{\left(a-b\right)\left(a-c\right)}-\frac{b}{\left(a-b\right)\left(b-c\right)}+\frac{c}{\left(a-c\right)\left(b-c\right)}\)

=> A = \(\frac{a\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}-\frac{b\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{c\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

=> A + \(\frac{ab-ac-ab+bc+ac-bc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=0\)

2 tháng 11 2019

\(B=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{a^2\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{b^2\left(c-a\right)}{\left(b-a\right)\left(b-c\right)\left(c-a\right)}\)

\(+\frac{c^2\left(a-b\right)}{\left(c-a\right)\left(c-b\right)\left(a-b\right)}\)

\(=\frac{a^2\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{b^2\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(+\frac{c^2\left(a-b\right)}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)