Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{\left(x+1\right)\left(x+3\right)}=\frac{3}{2}.\frac{\left(x+3\right)-\left(x+1\right)}{\left(x+3\right)\left(x+1\right)}=\frac{3}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}\right)\)
Tương tự:
\(\frac{3}{\left(x+3\right)\left(x+5\right)}=\frac{3}{2}.\left(\frac{1}{x+3}-\frac{1}{x+5}\right)\)
\(\frac{3}{\left(x+5\right)\left(x+7\right)}=\frac{3}{2}\left(\frac{1}{x+5}-\frac{1}{x+7}\right)\)
.....
\(\frac{3}{\left(x+99\right)\left(x+101\right)}=\frac{3}{2}\left(\frac{1}{x+99}-\frac{1}{101}\right)\)
Cộng các vế lại ta có:
\(\frac{3}{\left(x+1\right)\left(x+3\right)}+\)\(\frac{3}{\left(x+3\right)\left(x+5\right)}+\)\(\frac{3}{\left(x+5\right)\left(x+7\right)}+\)...\(+\frac{3}{\left(x+99\right)\left(x+101\right)}\)
=\(\frac{3}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}+...+\frac{1}{x+99}-\frac{1}{x+101}\right)\)
=\(\frac{3}{2}\left(\frac{1}{x+1}-\frac{1}{x+101}\right)\)
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
a)
\(A=\left(x-6\right)^2+\left(x+6\right)^2\)
\(A=\left(x^2-2x6+6^2\right)+\left(x^2+2x6+6^2\right)\)
\(A=x^2-2x6+6^2+x^2+2x6+6^2\)
\(A=\left(x^2+x^2\right)+\left(-2x6+2x6\right)+\left(6^2+6^2\right)\)
\(A=2x^2+72\)
b)
\(B=\left(x^2+y^2+3^2+2xy+2x3+2y3\right)-\left(x^2+y^2+9\right)\)
\(B=x^2+y^2+3^3+2xy+2x3+2y3-x^2-y^2-9\)
\(B=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(3^2-9\right)+2xy+2x3+2y3\)
\(B=2xy+2x3+2y3\)
Mình phải đi ngủ rồi, có gì mai làm tiếp nha
c/
C = (5x - 2) . (5x + 2) - (5x - 1)2
C = [(5x)2 - 22] - [(5x)2 - 2 . 5x1 + 12]
C = (5x)2 - 22 - (5x)2 + 2 . 5x1 - 12
C = [(5x)2 - (5x)2] + (-22 + 2 - 12) + 5x1
C = 5 + 5x1.
a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne\pm2\\x\ne0\end{matrix}\right.\)
Ta có : \(\frac{x-4}{x\left(x+2\right)}-\frac{1}{x\left(x-2\right)}=-\frac{2}{\left(x+2\right)\left(x-2\right)}\)
=> \(\frac{\left(x-4\right)\left(x-2\right)}{x\left(x+2\right)\left(x-2\right)}-\frac{x+2}{x\left(x-2\right)\left(x+2\right)}=-\frac{2x}{x\left(x+2\right)\left(x-2\right)}\)
=> \(\left(x-4\right)\left(x-2\right)-x-2=-2x\)
=> \(x^2-4x-2x+8-x-2=-2x\)
=> \(x^2-5x+6=0\)
=> \(\left(x-2\right)\left(x-3\right)=0\)
=> \(\left[{}\begin{matrix}x=2\\x=3\left(TM\right)\end{matrix}\right.\)
=> x = 3 .
Vậy phương trình trên có tập nghiệm là \(S=\left\{3\right\}\)
b, ĐKXĐ : \(x\ne0,-3,-6,-9,-12\)
Ta có : \(\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+9\right)}+\frac{1}{\left(x+9\right)\left(x+12\right)}=\frac{1}{16}\)
=> \(\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}+\frac{1}{x+9}-\frac{1}{x+12}=\frac{1}{16}\)
=> \(\frac{1}{x}-\frac{1}{x+12}=\frac{1}{16}\)
=> \(\frac{x+12}{x\left(x+12\right)}-\frac{x}{x\left(x+12\right)}=\frac{1}{16}\)
=> \(x\left(x+12\right)=192\)
=> \(x^2+12x-192=0\)
=> \(x^2+2x.6+36-228=0\)
=> \(\left(x+6\right)^2=288\)
=> \(\left[{}\begin{matrix}x=\sqrt{288}-6\\x=-\sqrt{288}-6\end{matrix}\right.\) ( TM )
Vậy phương trình có tập nghiệm là \(S=\left\{\pm\sqrt{288}-6\right\}\)