Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A= \(5\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)
\(A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=5\left(1-\dfrac{1}{100}\right)\)
\(A=5.\dfrac{99}{100}=\dfrac{99}{20}.\)
b, \(C=1.2.3+2.3.4+...+8.9.10\)
\(4C=1.2.3.4+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)\(4C=8.9.10.11\)
\(C=\dfrac{8.9.10.11}{4}=1980.\)
c, https://hoc24.vn/hoi-dap/question/384591.html
Câu này bạn vào đây mình đã giải câu tương tự nhé.
\(1)A=\dfrac{5}{1.2}+\dfrac{5}{2.3}+...+\dfrac{5}{99.100}\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=5\cdot\dfrac{99}{100}\)
\(\Leftrightarrow A=\dfrac{99}{20}\)
a) 15 - 3x = 6
=> 3x = 15 - 6
=> 3x = 9
=> x = 9 : 3 = 3
b) \(\dfrac{2}{3}-\dfrac{4}{3}x=\dfrac{1}{2}\Rightarrow\dfrac{4}{3}x=\dfrac{2}{3}-\dfrac{1}{2}\Rightarrow\dfrac{4}{3}x=\dfrac{1}{6}\Rightarrow x=\dfrac{1}{6}:\dfrac{4}{3}\Rightarrow x=\dfrac{3}{24}=\dfrac{1}{8}\)c) 319.(x - 12 ) = 4 . 320
=> x - 12 = 4 . 3
=> x - 12 = 12
=> x = 12 + 12 = 24
d) 3.(x - 4) = 2^2 . 3^3
=> x - 4 = 2^2 . 3^2
=> x - 4 = 36
=> x = 36 + 4 = 40
a)\(15-3x=6\Rightarrow3x=9\Rightarrow x=3\)
b) \(\dfrac{2}{3}-\dfrac{4}{3}x=\dfrac{1}{2}\Rightarrow\dfrac{4}{3}x=\dfrac{1}{6}\Rightarrow x=\dfrac{1}{8}\)
c) \(3^{19}.\left(x-12\right)=4.3^{20}\Rightarrow x-12=12\Rightarrow x=24\)
d)\(3\left(x-4\right)=2^2.3^3\Rightarrow3x-12=108\Rightarrow3x=120\Rightarrow x=40\)
\(\frac{5.\left(2^2.3^2\right)^9.\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^4}{5.2^{28}.3^{18}+7.2^{29}.3^{18}}\)
\(=\frac{5.2^{18}.3^{18}.2^{12}-2.2^{28}.3^{14}.3^4}{2^{28}.3^{18}.\left(5+7.2\right)}\)
\(=\frac{5.2^{30}.3^{18}-2^{29}.3^{18}}{2^{28}.3^{18}.19}=\frac{2^{28}.3^{18}.\left(5.4-2\right)}{2^{28}.3^{18}.19}\)
\(=\frac{5.4-2}{19}=\frac{18}{19}\)
\(B=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3B-B=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow2B=3^{101}-3\)
\(\Rightarrow B=\dfrac{3^{101}-3}{2}\)
\(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\)
\(=\dfrac{11.3^{29}-\left(3^2\right)^{15}}{2^2.3^{28}}\)
\(=\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\)
\(=\dfrac{3^{29}\left(11-3\right)}{2^2.3^{28}}\)
\(=\dfrac{3^{29}.2^3}{2^2.3^{28}}\)
\(=\dfrac{3.2}{1.1}=6\)
Bài giải
a, \(\frac{7}{12}+\frac{5}{6}+\frac{1}{4}-\frac{3}{7}-\frac{5}{12}\)
\(=\left(\frac{7}{12}-\frac{5}{12}+\frac{5}{6}+\frac{1}{4}\right)-\frac{3}{7}=\left(\frac{7}{12}-\frac{5}{12}+\frac{10}{12}+\frac{3}{12}\right)-\frac{3}{7}=\frac{5}{4}-\frac{3}{7}=\frac{23}{28}\)
b, \(\frac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=\frac{11\cdot3^{29}-3^{30}}{2^2\cdot3^{28}}=\frac{3^{29}\left(11-3\right)}{3^{28}\cdot4}=\frac{3\cdot8}{4}=6\)
3^x=3^(1+2+3+....+100)
x=1+2+3+..+100
x=(100+1).100/2=5050
\(3^x=3^1\cdot3^2\cdot...\cdot3^{100}\)
\(3^x=3^{1+2+...+100}\)
\(3^x=3^{5050}\)
Vậy x = 5050