\(\text{Tìm giá trị lớn nhất của biểu thức.}\frac{3\left|x\right|+2}{4\left|x\right|-5}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

Đặt \(C=\frac{3\left|x\right|+2}{4\left|x\right|-5}\)

\(\Rightarrow\frac{4}{3}C=\frac{4}{3}.\left(\frac{3\left|x\right|+2}{4\left|x\right|-5}\right)=\frac{12\left|x\right|+8}{12\left|x\right|-15}=\frac{12\left|x\right|-15+23}{12\left|x\right|-15}\)

                                                                \(=1+\frac{23}{12\left|x\right|-15}\)

Để C đạt GTLN \(\Leftrightarrow\left(12\left|x\right|-15\right)_{min}\)

Vì \(\left|x\right|\ge0\left(\forall x\right)\Rightarrow12\left|x\right|\ge0\Rightarrow12\left|x\right|-15\ge-15\)

Dấu "=" xảy ra <=> \(\left|x\right|=0\Leftrightarrow x=0\)

Vậy ...

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

17 tháng 6 2016

a)Ta thấy:

\(-\left|\frac{1}{3}x+2\right|\le0\)

\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)

\(\Rightarrow B\le5\)

Dấu "=" xảy ra khi x=-6

Vậy MaxB=5<=>x=-6

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:

\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)

\(\Rightarrow C\ge2\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)

Vậy MinC=2<=>x=6 hoặc -10

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

7 tháng 2 2018

\(A=\frac{3\left|x\right|+2}{4\left|x\right|-5}=\frac{3}{4}\cdot\frac{4\left(3\left|x\right|+2\right)}{3\left(4\left|x\right|-5\right)}=\frac{3}{4}\cdot\frac{12\left|x\right|+8}{12\left|x\right|-15}=\frac{3}{4}\left(1+\frac{23}{12\left|x\right|-15}\right)\)

A lớn nhất khi \(\frac{23}{12\left|x\right|-15}\) lớn nhất => 12|x| - 15 nhỏ nhất và 12|x| - 15 > 0 => x = 2

Vậy \(A_{Max}=\frac{3}{4}\left(1+\frac{23}{9}\right)=\frac{8}{3}\) khi x = 2

17 tháng 10 2020

a) \(A=x+\frac{1}{2}-\left|x-\frac{2}{3}\right|\)

TH1: Nếu \(x-\frac{2}{3}\ge0\Rightarrow x\ge\frac{2}{3}\Rightarrow\left|x-\frac{2}{3}\right|=x-\frac{2}{3}\)

\(A=x+\frac{1}{2}-x+\frac{2}{3}=\frac{7}{6}\left(1\right)\)

TH2: Nếu \(x-\frac{2}{3}< 0\Rightarrow x< \frac{2}{3}\Rightarrow\left|x-\frac{2}{3}\right|=-x+\frac{2}{3}\)

\(A=x+\frac{1}{2}+x-\frac{2}{3}=2x-\frac{1}{6}\)

Vì \(x< \frac{2}{3}\Rightarrow2x-\frac{1}{6}< \frac{7}{6}\left(2\right)\)

Từ (1) và (2) => GTLN của A là \(\frac{7}{6}\)khi \(x\ge\frac{2}{3}\)

1 tháng 8 2019

Tìm GTNN

Ta có: A = |x - 1| + |x - 4|

=>  A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3

=> A \(\ge\)3

Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0

<=> \(1\le x\le4\)

Vậy Min A = 3 <=> \(1\le x\le4\)

Tìm GTLN

Ta có: -|x + 2| \(\le\)\(\forall\)x

hay A  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max A = 0 <=> x = -2

5 tháng 5 2019

Do \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+3\ge3\)

\(\Rightarrow\frac{4}{3+\left(x+1\right)^2}\le\frac{4}{3}\)

Vậy \(Q_{max}=\frac{4}{3}\Leftrightarrow x=-1\)

5 tháng 5 2019

Do \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+5\ge5\)

\(\Rightarrow\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{5}\)

Vậy \(A_{max}=\frac{5}{3}\Leftrightarrow x=2\)

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee