\(\text{phân tích đa thức thành nhân tử A= bc(a+d)(b-c) -ac(b+d)(a-c)+ab(c+d)(a-b)}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

A= bc(a+d)(b-c) +ac(b+d)(c-a) + ab(c+d)(a-b) 
A= bc(ab+ bd -ac -dc ) + ac(bc+cd -ab-ad )+ab(ac+ad-bc-bd) 
A=(ab²c + b²cd -abc² -bdc² ) + (abc² + adc² -a²bc -a²cd ) + (a²bc + a²bd - ab²c -ab²d) 
A= (ab²c + cb²d -ab²c-ab²d) + (c²ab -abc² -bdc² +adc² ) + ( a²bd +a²bc -a²bc -a²cd) 
A= a²(bd-cd) + b²(cd-ad) + c²(ad-bd) 
A=a²d(b-c) + b²d(c-a) + c²d(a-b) 
A=d(a²b-a²c + b²c-b²a +c²a-c²b) 
A=d[b(a²-c²) + c(b²-a²) + a(c² - b²)] 

17 tháng 3 2018

gimf mk nha

12 tháng 5 2017

Ta có:

\(A=bc\left(a+d\right)\left(b-c\right)-ac\left(b+d\right)\left(a-c\right)+ab\left(c+d\right)\left(a-b\right)\)

\(=bc\left(a+d\right)\left[\left(b-a\right)+\left(a-c\right)\right]-ac\left(a-c\right)\left(b+d\right)+ab\left(c+d\right)\)\(\left(a-b\right)\)

\(=bc\left(a+d\right)\left(a-b\right)+bc\left(a+d\right)\left(a-c\right)-ac\left(b+d\right)\left(a-c\right)\)\(+ab\left(c+d\right)\left(a-b\right)\)

\(=b\left(a-b\right)\left[a\left(c+d\right)-c\left(a+d\right)\right]+c\left(a-c\right)\left[b\left(a+d\right)-a\left(b+d\right)\right]\)

\(=b\left(a-b\right).d\left(a-c\right)+c\left(a-c\right).d\left(b-a\right)\)

\(=d\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

a:

\(a^3+a^2c-abc+b^2c+b^3\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)(vì a+b=c=0)

câu b bn xem ở link này nha!

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

14 tháng 9 2016

= a2b + ab- b2c + bc+ a2c - ac2

13 tháng 7 2017

\(ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)+2abc\)

\(=ab\left(a+b\right)+b^2c+bc^2+a^2c+ac^2+2abc\)

\(=ab\left(a+b\right)+\left(ac^2+bc^2\right)+\left(a^2c+2abc+b^2c\right)\)

\(=ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a^2+2ab+b^2\right)\)

\(=ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2\)

\(=ab\left(a+b\right)+c^2\left(a+b\right)+\left(ac+bc\right)\left(a+b\right)\)

\(=\left(a+b\right)\left(ab+c^2+ac+bc\right)\)

\(=\left(a+b\right)\left[\left(ab+ac\right)+\left(c^2+bc\right)\right]\)

\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

13 tháng 8 2018

\(=a\left(ba+b^2+ca-c^2\right)\)\(-bc\left(b+c\right)\)

\(=a\left(a\left(b+c\right)+\left(b+c\right)\left(b-c\right)\right)-bc\left(b+c\right)\)

\(=a\left(b+c\right)\left(a+b-c\right)-bc\left(b+c\right)\)

\(=\left(b+c\right)\left(a^2+ab-ac-bc\right)\)

\(=\left(b+c\right)\left(a-c\right)\left(a+b\right)\)