Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d=3(a+b+c+d)/a+b+c+d=3
suy ra k=3
taco:\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}+\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)=>\(\dfrac{b+c+d}{a}+1=\dfrac{c+d+a}{b}+1=\dfrac{a+b+d}{c}+1=\dfrac{a+b+c}{d}+1=k+1\)=>\(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}=k+1=\dfrac{a+b+c+d+a+b+c+d+a+b+c+d}{a+b+c+d}=\dfrac{4.\left(a+b+c+d\right)}{a+b+c+d}=4\)
=>k+1=4
=>k=3
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :\(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{c};\frac{1}{b}=\frac{1}{a};\frac{1}{c}=\frac{1}{b}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
\(\Rightarrow a=b=c\)
\(\Rightarrow ab=bc=ca=a^2=b^2=c^2\)
\(\Rightarrow ab+bc+ca=a^2+b^2+c^2\)
\(\Rightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}=1\)
Vậy M=1
![](https://rs.olm.vn/images/avt/0.png?1311)
Ể? \(x^2+x+1=0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(VL\right)\) rồi mà SP.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) nếu x-1 >= 0 hay x >=1 ta có |x-1|=x-1
nếu x-1 < 0 hay x < 1 ta có |x-1| = 1-x
với x >= 1 ta có
|x-1| = 2x - 5
x-1 = 2x - 5
x-2x = -5 + 1
-x = -4
x=4 ( thỏa mãn khoảng xét x>=1)
với x < 1 ta có
|x-1| = 2x - 5
1-x = 2x - 5
-x - 2x = -5 -1
-3x = -6
x=2 ( không thỏa mãn khoảng xét x < 1 )
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt x2 + 5 = a2
x2 - 5 = b2
=> x2 + 5 - x2 + 5 = a2 - b2
=> (a-b)(a+b)=10=1.10=2.5=(-1).(-10)=(-2).(-5)
Sau đó thay a - b = x (x đại diện cho 1 số)
a + b = y => a = (x+y):2
Rồi sau đó đảo lại a - b = y; a + b = x
Cứ mỗi tích của 2 số bằng 10 thì bạn thay làm 2 trường hợp rồi tính sau đó kết luận.
![](https://rs.olm.vn/images/avt/0.png?1311)
https://olm.vn/hoi-dap/detail/221248297106.html
tham khảo nhé
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3}{a+b}=\frac{2}{b+c}=\frac{1}{c+a}=\frac{3+2+1}{a+b+b+c+c+a}=\frac{6}{2\left(a+b+c\right)}=\frac{3}{a+b+c}\)
\(\rightarrow a+b=a+b+c\) \(\rightarrow c=0\)
\(\Rightarrow P=\frac{3a+3b+2019c}{a+b-2020c}=\frac{3\left(a+b\right)+2019\cdot0}{a+b-2020\cdot0}=\frac{3\left(a+b\right)}{a+b}=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)
đặt a/b = c/d = k (k thuộc N)
=> a = bk
c = dk
thay a và c vào 2 phân số cần so sánh thì = nhau
Viên quan nói : " Tôi sẽ bị chém đầu ."
ông nói: tôi bị treo cổ
...
...