\(\text{Một viên quan nước Tấn đi Sứ sang nước Tề}\),\(\text{ bị vua...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d=3(a+b+c+d)/a+b+c+d=3

suy ra k=3

29 tháng 11 2017

taco:\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}+\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)=>\(\dfrac{b+c+d}{a}+1=\dfrac{c+d+a}{b}+1=\dfrac{a+b+d}{c}+1=\dfrac{a+b+c}{d}+1=k+1\)=>\(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}=k+1=\dfrac{a+b+c+d+a+b+c+d+a+b+c+d}{a+b+c+d}=\dfrac{4.\left(a+b+c+d\right)}{a+b+c+d}=4\)

=>k+1=4

=>k=3

12 tháng 8 2016

Ta có :\(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

          \(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)

          \(\Rightarrow\frac{1}{a}=\frac{1}{c};\frac{1}{b}=\frac{1}{a};\frac{1}{c}=\frac{1}{b}\)

          \(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

          \(\Rightarrow a=b=c\)

         \(\Rightarrow ab=bc=ca=a^2=b^2=c^2\)

          \(\Rightarrow ab+bc+ca=a^2+b^2+c^2\)

          \(\Rightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}=1\)

         Vậy M=1

9 tháng 6 2019

Ể? \(x^2+x+1=0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(VL\right)\) rồi mà SP.

12 tháng 6 2019

Rìa lí???\(x^2+x+1>0\forall x\) rồi cần gì tính nữa?

24 tháng 5 2016

a) nếu x-1 >= 0 hay x >=1 ta có |x-1|=x-1

nếu x-1 < 0 hay x < 1 ta có |x-1| = 1-x

với x >= 1 ta có

|x-1| = 2x - 5

x-1 = 2x - 5

x-2x = -5 + 1

-x = -4

x=4 ( thỏa mãn khoảng xét x>=1)

với x < 1 ta có

|x-1| = 2x - 5 

1-x = 2x - 5

-x - 2x = -5 -1

-3x = -6

x=2 ( không thỏa mãn khoảng xét x < 1 )

Đặt x2 + 5 = a2

x2 - 5 = b2

=> x2 + 5 - x2 + 5 = a2 - b2

=> (a-b)(a+b)=10=1.10=2.5=(-1).(-10)=(-2).(-5)

Sau đó thay a - b = x (x đại diện cho 1 số)

a + b = y => a = (x+y):2

Rồi sau đó đảo lại a - b = y; a + b = x

Cứ mỗi tích của 2 số bằng 10 thì bạn thay làm 2 trường hợp rồi tính sau đó kết luận.

27 tháng 12 2019

https://olm.vn/hoi-dap/detail/221248297106.html

tham khảo nhé

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3}{a+b}=\frac{2}{b+c}=\frac{1}{c+a}=\frac{3+2+1}{a+b+b+c+c+a}=\frac{6}{2\left(a+b+c\right)}=\frac{3}{a+b+c}\)

\(\rightarrow a+b=a+b+c\)         \(\rightarrow c=0\)

\(\Rightarrow P=\frac{3a+3b+2019c}{a+b-2020c}=\frac{3\left(a+b\right)+2019\cdot0}{a+b-2020\cdot0}=\frac{3\left(a+b\right)}{a+b}=3\)

31 tháng 10 2016

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)

31 tháng 10 2016

đặt a/b = c/d = k (k thuộc N) 

=> a = bk

c = dk

thay a và c vào 2 phân số cần so sánh thì = nhau