Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=85
Chắc z,mk làm r nhưng ko nhớ kết quả,đúng thì tick cho mk nhé
Condition \(x\ne-2\)
We have :
\(\dfrac{x^2-4}{x+2}=\dfrac{3x}{2}\)
\(\Leftrightarrow\dfrac{\left(x-2\right)\left(x+2\right)}{x+2}=\dfrac{3x}{2}\)
\(\Leftrightarrow x-2=\dfrac{3x}{2}\)
\(\Leftrightarrow2\left(x-2\right)=3x\)
\(\Leftrightarrow2x-4=3x\)
\(\Leftrightarrow x=-4\)
So the value of x is : \(-4\)
\(a,7x^2-28x+28\)
\(=7\left(x^2-4x+4\right)\)
\(=7\left(x^2-2x2+2^2\right)\)
\(=7\left(x-2\right)^2\)
b) \(x^2-7x+12=x^2-3x-4x+12=x\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)
c) \(x^3-2x+4=x^3-4x+2x+4=x\left(x^2-4\right)+2\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x+2\right)\)
\(C=\dfrac{A}{B}=\dfrac{n^3+2n^2-3n+2}{n^2-n}=\dfrac{\left(n^3-n^2\right)+3n^2-3n+2}{n^2-n}=\dfrac{n\left(n^2-n\right)+3\left(n^2-n\right)+2}{n^2-n}\)\(C=n+3+\dfrac{2}{n^2-n}\)
\(n,C\in Z\Rightarrow\dfrac{2}{n^2-n}\in Z\Rightarrow n^2-n=\left\{-2;-1;1;2\right\}\)
n^2 -n là hai số chẵn
\(\left[{}\begin{matrix}n^2-n=-2\\n^2-n=2\end{matrix}\right.\)
\(\left[{}\begin{matrix}n^2-n=-2\left(vn\right)\\n^2-n=2\left[{}\begin{matrix}n_1=-1\\n_2=2\end{matrix}\right.\end{matrix}\right.\)
a) \(n^2+2n-4=n^2+2n-15+11=\left(n^2+5n-3n-15\right)+11=\left(n-3\right)\left(n+5\right)+11\)
để \(n^2+2n-4\) chia hết cho 11 <=> (n - 3).(n +5) chia hết cho 11 <=> n - 3 chia hết cho 11 hoặc n + 5 chia hết cho 11 ( Vì 11 là số nguyên tố)
n- 3 chia hết cho 11 <=> n = 11k + 3 ( k nguyên)
n + 5 chia hết cho 11 <=> n = 11k' - 5 ( k' nguyên)
vậy với n = 11k + 3 hoặc n = 11k' - 5 thì \(n^2+2n-4⋮11\)
b.
\(n^3-2=\left(n^3-8\right)+6=\left(n-3\right)\left(n^2+2n+4\right)+6\)
để \(n^3-2⋮n-2\) <=> 6 chia hết cho n-2 <=> n - 2 ∈ Ư(6) = {-6;-3;-2;-1;1;2;3;6}
Tương ứng n ∈ {-4; -1; 0; 1; 3; 4; 5; 8}
Vậy...
Hình bạn tự vẽ :>
a, \(\Delta ABC\) có: \(\left\{{}\begin{matrix}AE=BE\left(gt\right)\\AD=DC\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\) DE là đường trung bình \(\Rightarrow DE//BC\) và \(DE=\dfrac{BC}{2}\)
Tương tự: \(\Delta GBC\) có MN là đường trung bình
\(\Rightarrow MN//BC\) và \(MN=\dfrac{BC}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}DE//MN\\DE=MN\end{matrix}\right.\)\(\Rightarrow MNDE\) là hình bình hành
b, Điều kiện của \(\Delta ABC\)là \(BD\perp CE\)