\(\text{Chứng minh rằng nếu }x_1\text{ và }x_2\text{ là hai nghiệm khác nhau của đa thức :}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2015

x1 ; x2 là 2 ngiệm của P(x) => P(x1) = P (x2) = 0 

=> ax12 + bx1 + c = ax22 + bx2 + c = 0  

=> ax12 + bx1 + c - ( ax22 + bx2 + c) = 0 

<=> a. (x12 - x22 ) + b.(x1 - x2)  = 0 <=> a. (x1 - x2). (x1 + x2) + b.(x1 - x2) = 0 

<=>  (x1 - x2). [ a.(x1 + x2) + b ] = 0 mà x1 ; x2 khác nhau nên  a.(x1 + x2) + b = 0 => b = - a.(x1 + x2)   (*)

+) ax12 + bx1 + c =  0  => c = - ( ax12 + bx1)  = - x1. (ax+ b)  = - x1 . (-ax2)  = ax1. x2   (Do (*))

vậy c = ax1.x2    (**)

Thay b ; c  từ (*) và (**) vào P(x) ta được P(x) = ax2 -ax.(x1 + x2) + ax1.x2 =  ax2 - ax.x1 - ax.x2 + ax1.x2

= ax. (x - x1)  - ax2 . (x - x1) = (ax - ax2). (x - x1) = a. (x - x2). (x - x1)  => ĐPCM

11 tháng 9 2019

Lời giải sẽ dài lắm nhé

x1,x2 là hai nghiệm của \(P(x)\)nên :

\(P(x_1)=ax_1^2+bx_1+c=0\)                                                      \((1)\)

\(P(x_2)=ax^2_2+bx^2+c=0\)

\(P(x_1)-P(x_2)=a\left[x^2_1-x^2_2\right]+b\left[x_1-x_2\right]=0\)

\(a\left[x_1+x_2\right]\left[x_1-x_2\right]+b\left[x_1-x_2\right]=0\)

\(\left[x_1-x_2\right]\left[a\left\{x_1+x_2\right\}+b\right]=0\)

Vì x1 \(\ne\)x2 nên x1 - x2 \(\ne\)0 do đó 

\(a\left[x_1+x_2\right]+b=0\Rightarrow b=-a\left[x_1+x_2\right]\)                                                  \((2)\)

Thế 2 vào 1 ta được :

\(ax^2_1-a\left[x_1+x_2\right]\cdot x_1+c=0\)

\(\Rightarrow c=ax_1\left[x_1+x_2\right]-ax^2_1=ax_1x_2\)                                          \((3)\)

Thế 2 vào 3 vào P\((x)\)ta được :

\(P(x)=ax^2+bx+c=ax^2-ax\left[x_1+x_2\right]+ax_1x_2\)

\(=ax^2-axx_1-axx_2+ax_1x_2=a\left[x^2-xx_1-xx_2+x_1x_2\right]\)

\(=a\left[x\left\{x-x_1\right\}-x_2\left\{x-x_1\right\}\right]=a\left[x-x_1\right]\left[x-x_2\right]\)

Vậy : ....

12 tháng 5 2018

x1=a; x2=b

a)

(a+1)^2>=4a^2=(2a)^2

<=>(a+1-2a)(a+1+2a)>=0

<=>(1-a)(3a+1)>=0

a€[0;1]

3a+1>0

1-a>=0

=>dpcm

29 tháng 12 2018

\(\text{a, Ta có :}\) \(M=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(\text{Đặt }a=x^2+10x+16\)

\(\text{Ta có: }M=a\left(a+8\right)+16=a^2+8a+16=\left(a+4\right)^2\)

\(M=\left(x^2+10x+20\right)^2\)

\(\text{b, }\)\(\left|x+1\right|=\left|x\left(x+1\right)\right|\)

\(\Leftrightarrow\left|x\left(x+1\right)\right|-\left|x+1\right|=0\)

\(\Leftrightarrow\left|x\right|.\left|x+1\right|-\left|x+1\right|=0\)

\(\Rightarrow\left|x+1\right|\left(\left|x\right|-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|x+1\right|=0\\\left|x\right|-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

12 tháng 3 2017

theo đề bài ta có:

\(\int\left(x_1\right)=2x_1+3\\ \int\left(x_2\right)=2x_2+3\\ suyra:\int\left(x_1\right)+\int\left(x_2\right)=2x_1+3+2x_2+3=2\cdot5+6=16\)

(có gì sai xin mọi người chỉ bảo thêm ạ!)

12 tháng 3 2017

16

13 tháng 8 2016

cho ba số tự nhiên liên tiếp, tích của hai số đầu nhỏ hơn tích của hai số sau là 50. Hỏi ba số đã cho là số nào?

13 tháng 8 2016

chứng minh:

\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) luôn chia hết cho 6 với mọi n