Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1( Hình mik đăng lên trước nha, mới lại phần bn nối điểm K với B, điểm F với D hộ mik nhé)
a) Xét tam giác EFA và tam giác CAB, có:
AE = AC ( giả thiết)
AF = AB (giả thiết)
Góc EAF = góc BAC (2 góc đối đỉnh)
=> ΔEAF = ΔCAB (c.g.c)
b) Vì ΔEFA = ΔCAB (Theo a)
=> Góc ABC = Góc EFA (cặp góc tương ứng)
=> EF = BC (cặp cạnh tương ứng) (1)
Mà EK = KF = 1/2 EF (2)
BD = DC = 1/2 BC (3)
Từ (1), (2) và (3)
=> KF = BD
Xét ΔKFB và ΔFBD, có
Cạnh BF chung
KF = BD (chứng minh trên)
Góc EFB = Góc ABC (chứng minh trên)
=> ΔKFB =ΔDBF (c.g.c)
=> KB = FD (cặp cạnh tương ứng)
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a: Xét tứ giác ABDE có
M là trung điểm của AD
M là trung điểm của BE
DO đó: ABDE là hình bình hành
Suy ra: AE//BD
hay AE//BC(1)
Xét tứ giác AFDC có
M là trung điểm của AD
M là trung điểm của CF
Do đó: AFDC là hình bình hành
SUy ra: AF//DC
hay AF//BC(2)
Từ (1) và (2) suy ra E,A,F thẳng hàng
b: Xét tứ giác BFEC có
M là trung điểm của BE
M là trung điểm của CF
Do đó: BFEC là hình bình hành
Suy ra: BF//EC
a: Xét ΔAME và ΔDMB có
MA=MD
\(\widehat{AME}=\widehat{DMB}\)
ME=MB
Do đó: ΔAME=ΔDMB
b: Xét tứ giác AEDB có
M là trung điểm của AD
M là trung điểm của BE
Do đó: AEDB là hình bình hành
Suy ra: AE=BD và AE//BD
=>AE//BC
c: Xét ΔAKE và ΔCKD có
\(\widehat{EAK}=\widehat{DCK}\)
AE=CD
\(\widehat{AKE}=\widehat{CKD}\)
Do đó: ΔAKE=ΔCKD
a) Xét \(\Delta DNA\) và \(\Delta BCN\), có:
DN = NB (gt)
góc N1 = N2 (2 góc đối đỉnh)
AN = CN (N là TĐ của AC)
->\(\Delta DNA=\Delta BCN\) (c.g.c)
-> AD = BC (2 cạnh tương ứng)
-> góc A1 = góc ACB ( 2 góc tương ứng)
Mà góc A1 và góc ACB là 2 góc SLT
-> AD//BC
Mình chỉ làm được ý a thôi hihi thông cảm
a,ta có
bac + abc + acb =180 {định lý tổng 3 góc trong cùng 1 tam giác}
90 + 40 + acb=180
150 + acb=180
acb=180 - 150
acb=30 hay góc c bằng 30 độ
b,xét tam giác amc và bkm ta có
mk=mc
ma=mb
kmb=amc /hai góc đối đỉnh/
kbm=90 độ hay kb vuông góc với ab
Xét tứ giác ACBK có
M là trung điểm của AB
M là trung điểm của CK
Do đó: ACBK là hình bình hành
Suy ra: KB//AC
hay KB⊥AB