Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. A=\(\frac{x^2-1}{x^2+1}\)
=> A=\(\frac{x^2+1-2}{x^2+1}\)=1-\(\frac{2}{x^2+1}\)
để A đạt GTNN thì \(\frac{2}{x^2+1}\)đạt GTLN khi đó (x2+1) đạt GTNN
mà x2+1>=1 suy ra x2+1 đạt GTNN là 1 khĩ=0.
khi đó A đạt GTLN là A=1-\(\frac{2}{0^2+1}\)=1-2=-1 . khi x=0
Đặt \(A=\left|x+2017\right|+\left|x-2\right|\)
\(=\left|x+2017\right|+\left|2-x\right|\)
\(\ge\left|x+2017+2-x\right|\)
\(=2019\)
Dấu bằng xảy ra khi và chỉ khi:\(-2017\le x\le2\)
\(\Rightarrow B=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\le\frac{1}{2019}\)
Vậy \(B_{max}=\frac{1}{2019}\Leftrightarrow-2017\le x\le2\)
a)\(A=\sqrt{x}-1+2\)
\(\Rightarrow A=\sqrt{x}+1\)
Ta có: \(\sqrt{x}\ge0,\forall x\)
\(\Rightarrow\sqrt{x}+1\ge1,\forall x\)
Dấu "=" xảy ra khi và chỉ khi
\(\sqrt{x}=0\Rightarrow\sqrt{x}=\sqrt{0}\Rightarrow x=0\)
Vậy \(minA=1\)khi và chỉ khi \(x=0\)
b)\(B=-\sqrt{x}+1+5\)
\(\Rightarrow B=-\sqrt{x}+6\)
- Ta có: \(\sqrt{x}\ge0,\forall x\)
\(\Rightarrow-\sqrt{x}\le0,\forall x\)
\(\Rightarrow-\sqrt{x}+6\le6\)
- Dấu "=" xảy ra khi và chỉ khi:
\(-\sqrt{x}=0\Rightarrow\sqrt{x}=0\Rightarrow\sqrt{x}=\sqrt{0}\Rightarrow x=0\)
Vậy \(maxB=6\)khi và chỉ khi \(x=0\)
a ) \(M=a^3+b^3+ab\) biết \(a+b=1\)
\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)
\(M=a^2-ab+b^2+ab\)
\(M=a^2+b^2\)
Ta có : \(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2=\left(a+b\right)^2=1\)
\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)
Vậy \(Min_M=\frac{1}{2}\Leftrightarrow a=b=\frac{1}{2}\).
b ) \(N=\left(x^2+x\right)\left(x^2+x-4\right)=\left[\left(x^2+x-2\right)+2\right]\left[\left(x^2+x-2\right)-2\right]=\left(x^2+x-2\right)^2-4\ge-4\)
Vậy \(Min_N=-4\)\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-2\end{array}\right.\).
a) Vì : \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)
Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)
b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy....
a) Vì \(\left|1,4-x\right|\ge0\forall x\)
\(\Rightarrow-\left|1,4-x\right|\le0\forall x\)\(\Rightarrow-\left|1,4-x\right|-2\le-2\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow1,4-x=0\)\(\Leftrightarrow x=1,4\)
Vậy \(maxB=-2\)\(\Leftrightarrow x=1,4\)
b) \(D=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)
\(\ge\left|x-1+2-x\right|=\left|1\right|=1\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(2-x\right)\ge0\)
TH1: \(\hept{\begin{cases}x-1\le0\\2-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\2\le x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge2\end{cases}}\)( vô lý )
TH2: \(\hept{\begin{cases}x-1\ge0\\2-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\2\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le2\end{cases}}\Leftrightarrow1\le x\le2\)
Vậy \(minD=1\)\(\Leftrightarrow1\le x\le2\)