Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; \(\dfrac{6}{x}\) < \(\dfrac{x}{7}\) < \(\dfrac{8}{x}\)
vì \(x\) \(\in\) N* ta có: 6.7 < \(x.x\) < 7.8
42 < \(x^2\) < 56
\(x^2\) = 49
\(x\) = \(\pm\) 7
Vì \(x\) \(\in\) N*; \(x\) = 7
b; \(\dfrac{x}{11}\) < \(\dfrac{12}{x}\) < \(\dfrac{x}{9}\)
9.12< \(x^2\) < 11.12
108 < \(x^2\) < 132
\(x^2\) = 121
\(\left[{}\begin{matrix}x=-11\\x=11\end{matrix}\right.\)
Vì \(x\in\) N*
\(x\) = 11
\(\dfrac{-11}{-32}>\dfrac{16}{49}\)
\(\dfrac{-2020}{-2021}>\dfrac{-2021}{2022}\)
B1: Tính nhanh:
\(E=\dfrac{-9}{10}\cdot\dfrac{5}{14}+\dfrac{1}{10}\cdot\dfrac{-9}{2}+\dfrac{1}{7}\cdot\dfrac{-9}{10}\)
\(E=\dfrac{-9}{10}\cdot\dfrac{5}{14}+\dfrac{-9}{10}\cdot\dfrac{1}{2}+\dfrac{1}{7}\cdot\dfrac{-9}{10}\)
\(E=\dfrac{-9}{10}\cdot\left(\dfrac{5}{14}+\dfrac{1}{2}+\dfrac{1}{7}\right)\)
\(E=\dfrac{-9}{10}\cdot\left(\dfrac{5}{14}+\dfrac{7}{14}+\dfrac{2}{14}\right)\)
\(E=\dfrac{-9}{10}\cdot1=\dfrac{-9}{10}\)
B2: Chứng tỏ rằng:
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}< 1\)
Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow1-\dfrac{1}{100}=\dfrac{99}{100}\)
Mà \(\dfrac{99}{100}< 1\)
\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}< 1\)
Tick mình nha!
Giả sử d là ước nguyên tố của n+13 và n-2
Ta có n+13⋮d
n−2⋮d
=> (n+13)−(n−2)⋮d
=> 15⋮d
=> d∈{3;5}, vì d nguyên tố, ta chỉ cần xét 1 trường hợp là đủ
Để phân số đã cho tối giản thì n+13 không chia hết cho 3
=> n+13≠3k (k∈Z)
=>n≠3k−13
Vây với n≠3k−13 (k∈Z) thì phân số đã cho tối giản
\(x+\left|\dfrac{1}{2}-\dfrac{1}{3}\right|=\left|\dfrac{-2}{3}-\dfrac{1}{4}\right|\)
\(x+\left|\dfrac{1}{6}\right|=\left|\dfrac{-11}{12}\right|\)
\(x+\dfrac{1}{6}=\dfrac{11}{12}\)
\(x=\dfrac{11}{12}-\dfrac{1}{6}\)
\(x=\dfrac{3}{4}\)
Vậy ...
De \(\frac{n+13}{n-2}\)la phan so toi gian thi n + 13 chia het n - 2
Gia su n + 13 chia het n - 2 ta co:
n + 13 \(⋮\)n - 2
=> ( n + 13 - ( n -2 ) \(⋮\)n - 2
=> 15 \(⋮\)n - 2
=> n - 2\(\in\)Ư(15)
=> n - 2\(\in\)( 1 ; 3 ; 5 ; 15 )
Vay n \(\in\)( 3 ; 5 ; 7 ; 17 )
- \(\frac{n+13}{n-2}\)=\(\frac{\left(n-2\right)+15}{n-2}=\)\(1+\frac{15}{n-2}\)\(\Rightarrow\)n-2thuộcƯ(15)=(-15;-5-;-3;-1;1;3;5;15)
n-2 -15 -5 -3 -1 +1 +3 +5 +15 n -13 -3 -1 1 3 5 7 17 Vậy \(\frac{n+13}{n-2}\)là phân số tối giản
Ta có A=12n-1/4n+3=12n+9-10/4n+3=3.(4n+3)-10/4n+3=3-10/4n+3
Để A đạt giá trị nhỏ nhất thì 10/4n+3 đạt giá trị lớn nhất
+4n+3>0=>10/4n+3>0=>3-10/4n+3<3
+4n+3<0=>10/4n+3<0=>3-10/4n+3>3
Để A đạt giá trị nhỏ nhất thì 10/4n+3 đạt giá trị lớn nhất
=>4n+3 là số nguyên dương lớn nhất
=>4n+3
=>4n=-4
n=-4:4
n=-1
Khi đó A nhỏ nhất
Vậy A=-1
Chúc bạn học tốt cho mình điểm nhé