\(a,b>0\)

Tìm min của 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2018

Ta có: \(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}=\frac{a^2}{b-1}+4\left(b-1\right)+\frac{b^2}{a-1}+4\left(a-1\right)-4a-4b+8\)

Áp dụng BĐT AM-GM ta có:

\(A\ge2\sqrt{\frac{4a^2\left(b-1\right)}{b-1}}+2\sqrt{\frac{4b^2\left(a-1\right)}{\left(a-1\right)}}-4a-4a+8\)

\(=4a+4b-4a-4b+8=8\)\(\Rightarrow A\ge8\)

Vậy Min A = 8. Dấu "=" xảy ra <=> a=b=2.

10 tháng 10 2018

Neko làm đúng rồi đấy =)))) Làm theo kiểu bình thường nè

Điều kiện a,b khác 1 a,b>0 

\(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge2\sqrt{\frac{a^2}{b-1}.\frac{b^2}{a-1}}\)( BĐT cosi như hồi tối đã nói nhé :3 đọc lại ib hồi tối để hiểu rõ hơn )

\(A=2\sqrt{\frac{a^2}{a-1}.\frac{b^2}{b-1}}=2.\frac{a}{\sqrt{a-1}}.\frac{b}{\sqrt{b-1}}\)

\(A=2.\frac{a-1+1}{\sqrt{a-1}}.\frac{b-1+1}{\sqrt{b-1}}\)

\(A=2.\left(\sqrt{a-1}+\frac{1}{\sqrt{a-1}}\right).\left(\sqrt{b-1}+\frac{1}{\sqrt{b-1}}\right)\)\(\ge2.2\sqrt{\sqrt{a-1}.\frac{1}{\sqrt{a-1}}}.2\sqrt{\sqrt{b-1}.\frac{1}{\sqrt{b-1}}}\)\(=2.2.2=8\)

Dẫu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{a-1}=\frac{1}{\sqrt{a-1}}\\\sqrt{b-1}=\frac{1}{\sqrt{b-1}}\end{cases}\Leftrightarrow\hept{\begin{cases}a-1=1\\b-1=1\end{cases}}}\)\(\Leftrightarrow a=b=2\left(n\right)\)

Vậy GTNN của A = 8 khi a=b=2 

Dùng cosi 2 lần =)) nếu thấy là m sẽ giỏi

21 tháng 5 2019

a.

\(A=\frac{1}{ab}+\frac{1}{a^2+b^2}=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)

\(\ge\frac{4}{a^2+2ab+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=6\)

Dấu "=" khi \(a=b=\frac{1}{2}\)

b.

\(B=\frac{2}{ab}+\frac{3}{a^2+b^2}=3\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)

\(\ge3\cdot\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=14\)

Dấu "=" khi \(a=b=\frac{1}{2}\)

c.

Ta có:

\(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) với mọi x,y

Áp dụng ta có:

\(C=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}=\frac{25}{2}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

2.

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2\right]\ge\left(\sqrt{x}\cdot\frac{a}{\sqrt{x}}+\sqrt{y}\cdot\frac{b}{\sqrt{y}}\right)^2\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{a^2}{x}+\frac{b^2}{y}\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Áp dụng nó ta chứng minh được:

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Áp dụng vào bài làm:

\(D=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{ab+ca+bc+ab+ca+bc}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

9 tháng 4 2018

a, Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x,y>0\)

Ta có: \(A=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+\frac{4}{a+b}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

b, Áp dụng \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x,y,z>0\)

Ta có: \(B=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2+\left(1+\frac{1}{c}\right)^2\ge\frac{\left(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\ge\frac{\left(3+\frac{9}{a+b+c}\right)^2}{3}\ge\frac{\left(3+6\right)^2}{3}=27\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

* Các BĐT phụ bạn tự CM nha! Chúc bạn học tốt

10 tháng 4 2018

Camon bạn!!! Nhưng bạn đọc sai đề r !! ^.^

8 tháng 7 2016

Sửa lại nha\(\frac{19}{b}\)

8 tháng 7 2016

thay vào \(\frac{1}{a^2+b^2}\)

21 tháng 6 2020

1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)

Dấu "=" xảy ra <=> a = 4 

Vậy min A = 17/4 tại a = 4

2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)

Dấu "=" xảy ra <=> x = 2

Vậy min B = 8 tại x = 2

3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)

Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)

Dấu "=" xảy ra <=> x = 1/2  thỏa mãn

Vậy min C = 7 đạt tại x = 1/2

28 tháng 8 2020

Mình học lớp 8 nên vẫn chưa biết "Min" là gì vậy bạn?

28 tháng 8 2020

\(S=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\)

\(=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+4\)

Dễ có:\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)

\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\ge\frac{2}{\frac{\left(a+b\right)^2}{4}}=\frac{8}{\left(a+b\right)^2}=8\)

Khi đó:\(S\ge\frac{1}{2}+8+4=\frac{25}{2}\)

Vậy ta có đpcm

29 tháng 4 2018

We have : \(A=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)

By Cauchy - Schwarz and AM - GM have :

\(A\ge\frac{\left(1+1\right)^2}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}=\frac{6}{\left(a+b\right)^2}\ge6\)

Then greatest posible of A is 6 when \(a=b=\frac{1}{2}\)

21 tháng 6 2020

https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này

10 tháng 7 2020

Áp dụng BĐT Cauchy cho 2 số không âm ta có : 

\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)

Đẳng thức xảy ra khi và chỉ khi \(a=4\)

Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)

29 tháng 4 2018

\(A=\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)2}{2}}\ge4+2=6\)

"=" khi \(a=b=\frac{1}{2}\)