Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a. \(y=\left(x^2-4\right)^{\frac{\pi}{2}}\)
Điều kiện \(x^2-4>0\Leftrightarrow\left[\begin{array}{nghiempt}x< -2\\x>2\end{array}\right.\)
Suy ra tập xác đinh \(D=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
b.\(y=\left(6-x-x^2\right)^{\frac{1}{3}}\)
Điều kiện \(6-x-x^2>0\Leftrightarrow x^2+x-6< 0\)
\(\Leftrightarrow-3< x< x\)
Vậy tập xác định là \(D=\left(-3;2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. \(y=\sqrt[3]{1-x}\) có tập xác định \(x\in R\)
b. \(y=\log_3\left(x^2-3x\right)\)
Điều kiện : \(x^2-3x>0\Leftrightarrow\left[\begin{array}{nghiempt}x< 0\\x>0\end{array}\right.\)
\(\Leftrightarrow\) TXĐ \(D=\left(-\infty;0\right)\cup\left(3;+\infty\right)\)
c. \(y=\log_{x^2-4x+4}2013\)
Điều kiện : \(\begin{cases}x^2-4x+4>0\\x^2-4x+4\ne1\end{cases}\)\(\Leftrightarrow\begin{cases}\left(x-2\right)^2>0\\x^2-4x+3>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ne2\\x\ne1\\x\ne3\end{cases}\)
Vậy tập xác định là \(D=R\backslash\left\{1;2;3\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(t=-x\Rightarrow dx=-dt\)
\(I=\int\limits^{-2}_2\frac{t^{2018}}{e^{-t}+1}\left(-dt\right)=\int\limits^2_{-2}\frac{e^t.t^{2018}}{e^t+1}dt=\int\limits^2_{-2}\frac{e^x.x^{2018}}{e^x+1}dx\)
\(\Rightarrow I+I=\int\limits^2_{-2}\frac{x^{2018}+e^x.x^{2018}}{e^x+1}dx=\int\limits^2_{-2}x^{2018}dx=\frac{2.2^{2019}}{2019}\)
\(\Rightarrow I=\frac{2^{2019}}{2019}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Tập xác định của hàm số là :
\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)
b) Tập xác định của hàm số là :
\(D=\left(1;+\infty\right)\)
c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)
Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)
d) Hàm số xác định khi và chỉ khi
\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)
Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)
Đáp án D