K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 10 2019

\(\left(m+3\right)x^2+\left(3-3m\right)x+2m-6=0\)

\(a+b+c=m+3+3-3m+2m-6=0\)

Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=\frac{2m-6}{m+3}\end{matrix}\right.\)

30 tháng 12 2022

Bài 3:

a: TH1: m=-2

=>-2(-2-1)x+4<0

=>6x+4<0

=>x<-4/6(loại)

TH2: m<>-2

\(\text{Δ}=\left(2m-2\right)^2-16\left(m+2\right)\)

=4m^2-8m+4-16m-32

=4m^2-24m-28

Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}4m^2-24m-28< =0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< =m< =7\\m>-2\end{matrix}\right.\Leftrightarrow-1< =m< =7\)

b: TH1: m=3

=>5x-4>0

=>x>4/5(loại)

TH2: m<>3

Δ=(m+2)^2-4*(-4)(m-3)

\(=m^2+4m+4+16m-48=m^2+20m-44\)

Để bất phương trình vô nghiệm thì

\(\left\{{}\begin{matrix}m^2+20m-44< =0\\m-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-22< =m< =2\\m< 3\end{matrix}\right.\Leftrightarrow-22< =m< =2\)

1 tháng 7 2015

1) <=> 1 - sin2x + sin x + 1 = 0 

<=> - sin2x + sin x = 0 <=> sinx.(1 - sin x) = 0 <=> sin x = 0 hoặc sin x = 1

+) sin x = 0 <=> x = k\(\pi\)

+) sin x = 1 <=> x = \(\frac{\pi}{2}+k2\pi\)

2) <=> 2cos x - 2(2cos2 x - 1) = 1 <=> -4cos2 x + 2cos x + 1 = 0 

\(\Delta\)' = 5 => cosx = \(\frac{-1+\sqrt{5}}{-4}\) (Thỏa mãn) hoặc cosx =  \(\frac{-1-\sqrt{5}}{-4}=\frac{\sqrt{5}+1}{4}\)(Thỏa mãn)

cosx = \(\frac{-1+\sqrt{5}}{-4}\) <=> x = \(\pm\) arccos \(\frac{-1+\sqrt{5}}{-4}\) + k2\(\pi\)

cosx =  \(\frac{\sqrt{5}+1}{4}\) <=> x =\(\pm\) arccos \(\frac{\sqrt{5}+1}{4}\) +  k2\(\pi\)

Vậy....
3) chia cả 2 vế cho 2 ta được:
\(\frac{1}{2}\sin x-\frac{\sqrt{3}}{2}\cos x=\frac{1}{2}\) <=> \(\cos\frac{\pi}{3}\sin x\sin-\sin\frac{\pi}{3}\cos x=\sin\frac{\pi}{6}\Leftrightarrow\sin\left(x-\frac{\pi}{3}\right)=\sin\frac{\pi}{6}\)
<=> \(x-\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\) hoặc \(x-\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\)
<=> \(x=\frac{\pi}{2}+k2\pi\) hoặc \(x=\frac{7\pi}{6}+k2\pi\)
Vậy....
 
1 tháng 7 2015

1)  Có: m4 - m2 + 1 = (m2 - \(\frac{1}{2}\))2 + \(\frac{3}{4}\) > 0 với mọi m

|x2 - 1| = m4 - m2 + 1   

<=> x2 - 1 = m4 - m2 + 1    (1)  hoặc x2 - 1 = - ( m4 - m2 + 1 )    (2)

Rõ ràng : nếu x1 là nghiệm của (1) thì x1 không là nghiệm của (2)

Để pt đã cho 4 nghiệm phân biệt <=> pt (1) và (2) đều có 2 nghiệm phân  biệt

(1) <=> x2 = m4 - m2 + 2 > 0 với mọi m => (1) luôn có 2 nghiệm phân biệt

(2) <=> x2 = - m4 + m2 . Pt có 2 nghiệm phân biệt <=> m2 - m4 > 0 <=> m2.(1 - m2) > 0 

<=> m \(\ne\) 0 và 1 - m2 > 0 

<=> m \(\ne\) 0  và -1 < m < 1

Vậy với  m \(\ne\) 0  và -1 < m < 1 thì pt đã cho có 4 nghiệm pb

30 tháng 12 2019

giải như pt bậc hai thoy bạn chủ yếu phần xđ hệ số a,b,c rồi giải nếu có nghiệm thì cho đenta≥0

NV
10 tháng 5 2020

1.

- Với \(x\ge\frac{1}{2}\Rightarrow2x-1\le x+2\Rightarrow x\le3\Rightarrow\frac{1}{2}\le x\le3\)

- Với \(x< \frac{1}{2}\Rightarrow1-2x\le x+2\Rightarrow3x\ge-1\Rightarrow x\ge-\frac{1}{3}\)

Vậy nghiệm của BPT là \(-\frac{1}{3}\le x\le3\)

2.

Để pt có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow\left(m+2\right)\left(2m-3\right)< 0\Rightarrow-2< m< \frac{3}{2}\)

3.

\(5x-1>\frac{2x}{5}+3\Leftrightarrow5x-\frac{2x}{5}>4\Leftrightarrow\frac{23}{5}x>4\Rightarrow x>\frac{20}{23}\)

4.

\(4x^2+4x+1-3x+9>4x^2+10\)

\(\Leftrightarrow x>0\)

5.

\(1< \frac{1}{1-x}\Leftrightarrow\frac{1}{1-x}-1>0\Leftrightarrow\frac{x}{1-x}>0\Rightarrow0< x< 1\)

6.

\(\frac{\left(x-5\right)^2\left(x-3\right)}{x+1}\le0\Rightarrow\left[{}\begin{matrix}x=5\\-1< x\le3\end{matrix}\right.\)

10 tháng 5 2020

K hiểu c3 cho lắm sao có 23/5 .Giải thích đc k bạn.