K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: (x-2019)(x+2020)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2019=0\\x+2020=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2019\\x=-2020\end{matrix}\right.\)

Vậy: S={2019;-2020}

\(PT\Leftrightarrow\left(\frac{x-5}{2020}-1\right)+\left(\frac{x-6}{2019}-1\right)-\left(\frac{x-7}{2018}-1\right)-\left(\frac{x-8}{2017}-1\right)=0\)

\(\Leftrightarrow\left(x-2025\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)

Dễ thấy \(\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)< 0\)

\(\Rightarrow x=2025=5^2.3^4\)

Vậy các ước nguyên tố của nghieemh pt là 3,5 

NV
14 tháng 2 2020

Nhận thấy \(x=\left\{2019;2020\right\}\) là 2 nghiệm của pt đã cho

- Với \(x>2020\Rightarrow\left\{{}\begin{matrix}\left|x-2019\right|^{2019}>1\\\left|x-2020\right|^{2020}>0\end{matrix}\right.\) \(\Rightarrow VT>1>VP\)

\(\Rightarrow\) pt vô nghiệm

- Với \(x< 2019\Rightarrow\left\{{}\begin{matrix}\left|x-2019\right|^{2019}>0\\\left|x-2020\right|^{2020}>1\end{matrix}\right.\) \(\Rightarrow VT>1>VP\)

Pt vô nghiệm

- Với \(2019< x< 2020\Rightarrow\left\{{}\begin{matrix}0< x-2019< 1\\0< 2020-x< 1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-2019\right|^{2019}< x-2019\\\left|2020-x\right|^{2020}< 2020-x\end{matrix}\right.\)

\(\Rightarrow VT< x-2019+2020-x=1\Rightarrow VT< VP\)

Pt vô nghiệm

Vậy pt có đúng 2 nghiệm \(\left[{}\begin{matrix}x=2019\\x=2020\end{matrix}\right.\)

14 tháng 2 2020

giỏi quá

=>\(\left(\dfrac{x+1}{2021}+1\right)+\left(\dfrac{x+2}{2020}+1\right)+\left(\dfrac{x+3}{2019}+1\right)+\left(\dfrac{x+2028}{2}-3\right)=0\)

=>x+2022=0

=>x=-2022

22 tháng 2 2020

Các bạn giúp mk với ạ

15 tháng 5 2020

Nooooooooooo giúp

17 tháng 3 2021

Ta có:\(1+x+x^2+x^3+...+x^{2020}=0\)

\(\Leftrightarrow1+\left(x+x^2\right)+\left(x^3+x^4\right)+...+\left(x^{2019}+x^{2020}\right)=0\)

Mà \(x+x^2\ge0\forall x\)

\(x^3+x^4\ge0\forall x\)

........

\(x^{2019}+x^{2020}\ge0\forall x\)

\(\Leftrightarrow1+\left(x+x^2\right)+\left(x^3+x^4\right)+...+\left(x^{2019}+x^{2020}\right)\ge1\forall x\)

Theo bài ra:\(1+\left(x+x^2\right)+\left(x^3+x^4\right)+...+\left(x^{2019}+x^{2020}\right)=0\)

\(\Rightarrow\)Vô nghiệm

20 tháng 4 2020

\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)

<=> \(\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)

<=> \(\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)

<=> \(\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

<=> x + 2015 = 0  ( vì \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\)

<=> x = - 2015 

Vậy x = -2015.

Giải phương trình :

\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)

\(\Rightarrow\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)

\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)

\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

Mà \(\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)>0\)

\(\Rightarrow x+2015=0\)

\(\Rightarrow x=-2015\)

21 tháng 2 2018

Đáp án cần chọn: A