Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow4\left(6-x\right)-3x=6\left(2x+3\right)-12\)
=>24-4x-3x=12x+18-12
=>12x+6=-7x+24
=>19x=18
=>x=18/19
b: \(\Leftrightarrow-210x-6\left(x-3\right)-15x=30x+10\left(2x+1\right)\)
=>-225x-6x+18=30x+20x+10
=>-231x+18-50x-10=0
=>-281x=-8
=>x=8/281
c: \(\Leftrightarrow36-2\left(x+3\right)=-4x+1-x\)
=>36-2x-6=-5x+1
=>3x=1+6-36=5-36=-31
=>x=-31/3
d: \(\Leftrightarrow-30\left(x-3\right)+10\left(2x-7\right)=6\left(6-x\right)\)
=>-30x+90+20x-70=36-6x
=>-10x+20=36-6x
=>-4x=16
=>x=-4
a) \(\frac{6-x}{3}-\frac{x}{4}=\frac{3+2x}{2}-1\)
\(\frac{4\left(6-x\right)}{12}-\frac{3x}{12}=\frac{3+2x}{2}-\frac{2}{2}\)
\(\frac{24-4x-3x}{12}=\frac{3+2x-2}{2}\)
\(\frac{24-7x}{12}=\frac{2x+1}{2}\)
\(\Rightarrow2\left(24-7x\right)=12\left(2x+1\right)\)
\(\Rightarrow48-14x=24x+12\)
\(\Rightarrow24x+14x=48-12\)
\(\Rightarrow38x=36\)
\(\Rightarrow x=\frac{18}{19}\)
b) \(-7x-\frac{x-3}{5}-\frac{x}{2}=x+\frac{2x+1}{3}\)
\(\frac{-70x}{10}-\frac{2\left(x-3\right)}{10}-\frac{5x}{10}=\frac{3x}{3}+\frac{2x+1}{3}\)
\(\frac{-70x-2x+6-5x}{10}=\frac{3x+2x+1}{3}\)
\(\frac{-77x+6}{10}=\frac{5x+1}{3}\)
\(\Rightarrow3\left(-77x+6\right)=10\left(5x+1\right)\)
\(\Leftrightarrow-231x+18=50x+10\)
\(\Leftrightarrow50x+231x=18-10\)
\(\Leftrightarrow281x=8\)
\(\Leftrightarrow x=\frac{8}{281}\)
Mấy câu kia tương tự
2) a) Ta có B = \(\frac{x+2}{x-2}-\frac{x-2}{x+2}-\frac{16}{4-x^2}=\frac{\left(x+2\right)^2-\left(x-2\right)^2+16}{\left(x-2\right)\left(x+2\right)}=\frac{8\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{8}{x-2}\)
Khi |x - 1| = 2
=> \(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Khi x = 3 (thỏa mãn) => A = \(\frac{3^2-2.3}{3+1}=\frac{3}{4}\)
Khi x = - 1 (không thỏa mãn) => Không tìm được A
b) Ta có P = \(A.B=\frac{x^2-2x}{x+1}.\frac{8}{x-2}=\frac{8x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{8x}{x+1}\)
Đẻ P < 8
=> \(\frac{8x}{x+1}< 8\Leftrightarrow\frac{x}{x+1}< 1\)
=> \(\orbr{\begin{cases}x< x+1\left(x>-1\right)\\x>x+1\left(x< -1\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}0x< 1\left(tm\right)\\0x>1\left(\text{loại}\right)\end{cases}}\)
Vậy x > - 1 thì P < 8
a) ( 3 - x )( x2 + 2x - 7 ) + ( x - 3 )( x2 + x - 5 )
= ( 3 - x )( x2 + 2x - 7 ) - ( 3 - x )( x2 + x - 5 )
= ( 3 - x )( x2 + 2x - 7 - x2 - x + 5 )
= ( 3 - x )( x - 2 )
b) ( x - 5 )2 + 3( 5 - x )
= ( x - 5 )2 - 3( x - 5 )
= ( x - 5 )( x - 5 - 3 ) = ( x - 5 )( x - 8 )
c) 2x( x - 1 )2 - ( 1 - x )3
= 2x( 1 - x )2 - ( 1 - x )3
= ( 1 - x )2( 2x - 1 + x ) = ( 1 - x )2( 3x - 1 )
d) x2 + 8x + 16 = ( x + 4 )2
e) x2 - 4xy + 4y2 = ( x - 2y )2
g) 4x2 - 25y2 = ( 2x )2 - ( 5y )2 = ( 2x - 5y )( 2x + 5y )
h) 25( x + 1 )2 - 4( x - 3 )2
= 52( x + 1 )2 - 22( x - 3 )2
= ( 5x + 5 )2 - ( 2x - 6 )2
= ( 5x + 5 - 2x + 6 )( 5x + 5 + 2x - 6 )
= ( 3x + 11 )( 7x - 1 )
i) x3 + 27 = ( x + 3 )( x2 - 3x + 9 )
k) 8x3 - 125 = ( 2x )3 - 53 = ( 2x - 5 )( 4x2 + 10x + 25 )
l) x3 + 6x2 + 12x + 8 = ( x + 2 )3
m) -x3 + 9x2 - 27x + 27 = -( x3 - 9x2 + 27x - 27 ) = -( x - 3 )3
Câu 1: (3,0 điểm). Giải các phương trình:
a) \(3x+5=2x+2\).
\(\Leftrightarrow3x-2x=2-5\).
\(\Leftrightarrow x=-3\).
Vậy phương trình có tập nghiệm: \(S=\left\{-3\right\}\).
b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\left(ĐKXĐ:x\ne-1;x\ne2\right)\).
\(\Leftrightarrow\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\).
\(\Rightarrow x-5=4x-8+3x+3\).
\(\Leftrightarrow x-4x-3x=-8+3+5\).
\(\Leftrightarrow-6x=0\).
\(\Leftrightarrow x=0\)(thỏa mãn ĐKXĐ).
Vậy phương trình có tập nghiệm: \(S=\left\{0\right\}\).
c) \(\left|x-3\right|+1=2x-7\)
- Xét \(x-3\ge0\Leftrightarrow x\ge3\). Do đó \(\left|x-3\right|=x-3\). Phương trình trở thành:
\(x-3+1=2x-7\).
\(\Leftrightarrow x-2=2x-7\).
\(\Leftrightarrow x-2x=-7+2\).
\(\Leftrightarrow-x=-5\).
\(\Leftrightarrow x=5\)(thỏa mãn).
- Xét \(x-3< 0\Leftrightarrow x< 3\)Do đó \(\left|x-3\right|=3-x\). Phương trình trở thành:
\(3-x+1=2x-7\).
\(\Leftrightarrow4-x=2x-7\).
\(-x-2x=-7-4\).
\(\Leftrightarrow-3x=-11\).
\(\Leftrightarrow x=\frac{-11}{-3}=\frac{11}{3}\)(loại).
Vậy phương trình có tập nghiệm: \(S=\left\{5\right\}\).
Câu 2: (2,0 điểm).
a) \(5x-5>x+15\).
\(\Leftrightarrow5x-x>15+5\).
\(\Leftrightarrow4x>20\).
\(\Leftrightarrow x>5\).
Vậy bất phương trình có tập nghiệm: \(\left\{x|x>5\right\}\).
b) \(\frac{8-4x}{3}>\frac{12-x}{5}\).
\(\Leftrightarrow\frac{5\left(8-4x\right)}{15}>\frac{3\left(12-x\right)}{15}\).
\(\Leftrightarrow40-20x>36-3x\).
\(\Leftrightarrow-20x+3x>36-40\).
\(\Leftrightarrow-17x>-4\).
\(\Leftrightarrow x< \frac{4}{17}\)\(\Leftrightarrow x< 0\frac{4}{17}\).
\(\Rightarrow\)Số nguyên x lớn nhất thỏa mãn bất phương trình trên là: \(x=0\).
Vậy \(x=0\).
Vy Lê: bạn ơi hướng làm của bài là khai triển biểu thức đơn giản và phát hiện 1 số biểu thức có liên quan đến hằng đẳng thức thôi nên mình nghĩ mình làm như vậy cũng có ngắn lắm đâu nhỉ? Ví dụ như câu c chả hạn. $(2x+3)(4x^2-6x+9)=(2x)^3+3^3$ là hằng đẳng thức đáng nhớ rồi nên mình áp dụng luôn. $2(4x^3-3)=8x^3-6$ theo khai triển thông thường.
Lời giải:
a)
$(-x-3)^3+(x+9)(x^2+27)$
$=(x+9)(x^2+27)-(x+3)^3$
$=x^3+27x+9x^2+243-(x^3+9x^2+27x+27)$
$=216$
b)
$(x+2)^3-x(x^2+6x-5)-8$
$=x^3+6x^2+12x+8-x^3-6x^2+5x-8$
$=17x$
c)
$(2x+3)(4x^2-6x+9)-2(4x^3-3)$
$=(2x)^3+3^3-2(4x^3-3)=8x^3+27-8x^3+6=33$
Bài 7
\(a,A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
GTNN \(A=4\) khi \(\left(x-1\right)^2=0\Rightarrow x=1\)
\(b,B=x^2-x+1\)
\(=\left(x^2-2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(c,C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x=t\)
\(\Rightarrow C=\left(t-6\right)\left(t+6\right)\)
\(=t^2-36\)
\(\left(x^2+5x\right)^2-36\ge36\forall x\)
\(d,D=x^2+5y^2-2xy+4y-3\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)-4\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2-4\ge-4\)
a. \(8x\left(x-2017\right)-2x+4034=0\)
\(8x\left(x-2017\right)-2\left(x-2017\right)=0\)
\(\left(8x-2\right)\left(x-2017\right)=0\)
\(\Rightarrow TH1:8x-2=0\)
\(8x=2\)
\(x=\frac{1}{4}\)
\(TH2:x-2017=0\)
\(x=2017\)
Vậy \(x\in\left\{\frac{1}{4};2017\right\}\)
Bài 1
a) \(8x\left(x-2017\right)-2x+4034=0\)
\(\Rightarrow8x\left(x-2017\right)-2\left(x-2017\right)=0\)
\(\Rightarrow\left(x-2017\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2017\\x=\frac{1}{4}\end{cases}}\)
\(a.\frac{7x-3}{x-1}=\frac{2}{3}\\\Leftrightarrow \frac{3\left(7x-3\right)}{3\left(x-1\right)}= \frac{2\left(x-1\right)}{3\left(x-1\right)}\\ \Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\\\Leftrightarrow 3\left(7x-3\right)-2\left(x-1\right)=0\\ \Leftrightarrow21x-9-2x+2=0\\ \Leftrightarrow19x-7=0\\ \Leftrightarrow19x=7\\ \Leftrightarrow x=\frac{7}{19}\)
\(b.\frac{2\left(3-7x\right)}{1+x}=\frac{1}{2}\\ \Leftrightarrow\frac{4\left(3-7x\right)}{2\left(1+x\right)}=\frac{1\left(1+x\right)}{2\left(1+x\right)}\\\Leftrightarrow 4\left(3-7x\right)=1\left(1+x\right)\\ \Leftrightarrow4\left(3-7x\right)-1\left(1+x\right)=0\\ \Leftrightarrow12-28x-1-x=0\\ \Leftrightarrow11-29x=0\\ \Leftrightarrow-29x=-11\\ \Leftrightarrow x=\frac{-11}{-29}=\frac{11}{29}\)
\(c.\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\\ \Leftrightarrow\frac{\left(5x-1\right)\left(3x-1\right)}{\left(3x+2\right)\left(3x-1\right)}=\frac{\left(5x-7\right)\left(3x+2\right)}{\left(3x+2\right)\left(3x-1\right)}\\ \Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\\ \Leftrightarrow\left(5x-1\right)\left(3x-1\right)-\left(5x-7\right)\left(3x+2\right)=0\\ \Leftrightarrow15x^2-5x-3x+1-15x^2-10x+21x+14=0\\ \Leftrightarrow3x+15=0\\\Leftrightarrow 3x=-15\\\Leftrightarrow x=-5\)
\(d.\frac{4x+7}{x-1}=\frac{12x+5}{3x+4}\\\Leftrightarrow \frac{\left(4x+7\right)\left(3x+4\right)}{\left(x-1\right)\left(3x+4\right)}=\frac{\left(12x+5\right)\left(x-1\right)}{\left(3x+4\right)\left(x-1\right)}\\\Leftrightarrow \left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\\\Leftrightarrow \left(4x+7\right)\left(3x+4\right)-\left(12x+5\right)\left(x-1\right)=0\\ \Leftrightarrow12x^2+16x+21x+28-12x^2-12x+5x-5=0\\ \Leftrightarrow30x+23=0\\ \Leftrightarrow30x=-23\\ \Leftrightarrow x=\frac{-23}{30}\)
\(e.\frac{1}{x-2}+3=\frac{3-x}{x-2}\\ \Leftrightarrow\frac{1}{x-2}+\frac{3\left(x-2\right)}{x-2}=\frac{3-x}{x-2}\\ \Leftrightarrow1+3\left(x-2\right)=3-x\\\Leftrightarrow 1+3x-6=3-x\\\Leftrightarrow 1+3x-6-3+x=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow4x=8\\ \Leftrightarrow x=2\)
\(f.\frac{8-x}{x-7}-8=\frac{1}{x-7}\\ \Leftrightarrow\frac{8-x}{x-7}-\frac{8\left(x-7\right)}{x-7}=\frac{1}{x-7}\\ \Leftrightarrow8-x-8\left(x-7\right)=1\\ \Leftrightarrow8-x-8\left(x-7\right)-1=0\\\Leftrightarrow 8-x-8x+56-1=0\\\Leftrightarrow 63-9x=0\\\Leftrightarrow -9x=-63\\ \Leftrightarrow x=\frac{-63}{-9}=7\)
\(g.\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\\ \Leftrightarrow\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{\left(x-5\right)\left(x+5\right)}\\\Leftrightarrow \frac{\left(x+5\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\frac{20}{\left(x-5\right)\left(x+5\right)}\\ \Leftrightarrow\left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)=20\\\Leftrightarrow \left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)-20=0\\ \Leftrightarrow x^2+5x+5x+25-x^2+5x+5x-25-20=0\\ \Leftrightarrow20x-20=0\\ \Leftrightarrow20x=20\\ \Leftrightarrow x=1\)
\(j.\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\\\Leftrightarrow \frac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{2.2x}{2\left(x+1\right)\left(x-3\right)}\\ \Leftrightarrow x\left(x+1\right)+x\left(x-3\right)=4x\\\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)-4x=0\\\Leftrightarrow x^2+x+x^2-3x-4x=0\\ \Leftrightarrow2x^2-6x=0\\ \Leftrightarrow2x\left(x-3\right)=0\\\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right. \)
\(a\frac{x^2-49}{x+5}:\left(x-7\right)\)
\(=\frac{\left(x-7\right)\left(x+7\right)}{x+5}.\frac{1}{\left(x-7\right)}\)
\(=\frac{x+7}{x+5}\)
\(b,\frac{2x+7}{x+2}-\frac{x+8}{2x+4}\)
\(=\frac{2\left(2x+7\right)}{2\left(x+2\right)}-\frac{x+8}{2\left(x+2\right)}=\frac{4x+14-x+8}{2\left(x+2\right)}\)
\(=\frac{3x+22}{2\left(x+2\right)}\)
a) \(\frac{x^2-49}{x+5}\div\left(x-7\right)=\frac{\left(x-7\right)\left(x+7\right)}{x+5}.\frac{1}{x-7}=\frac{x+7}{x+5}\)
b) \(\frac{2x+7}{x+2}-\frac{x+8}{2x+4}=\frac{2\left(2x+7\right)}{2\left(x+2\right)}-\frac{x+8}{2\left(x+2\right)}=\frac{\left(4x+14\right)-\left(x+8\right)}{2\left(x+2\right)}\)
\(=\frac{4x+14-x-8}{2\left(x+2\right)}=\frac{3x+6}{2\left(x+2\right)}=\frac{3\left(x+2\right)}{2\left(x+2\right)}=\frac{3}{2}\)
`B.S={x|x<-8/5}`
`-5x-8=|5x+8|`
`<=>-(5x+8)=|5x+8|`
`<=>5x+8<=0`
`<=>x<=-8/5`
`B.S={x|x<=-8/5}`
`-5x-8=|5x+8|`
`<=>-(5x+8)=|5x+8|`
`<=>5x+8<=0`
`<=>x<=-8/5`