Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: x>0
\(bpt\Leftrightarrow\hept{\begin{cases}x\ge0\\6x^2-13x-15=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x=3;x=\frac{-5}{6}\end{cases}\Leftrightarrow}x=3\Rightarrow y=\pm2}\)
\(\Leftrightarrow\frac{4}{\sqrt{x}}\ge\frac{\left(\sqrt{2x+17}-\sqrt{2x+1}\right)\left(\sqrt{2x+17}+\sqrt{2x+1}\right)}{\sqrt{2x+17}+\sqrt{2x+1}}\)
\(\Leftrightarrow\frac{4}{\sqrt{x}}\ge\frac{16}{\sqrt{2x+17}+\sqrt{2x+1}}\)
\(\Leftrightarrow\sqrt{2x+17}+\sqrt{2x+1}\ge4\sqrt{x}\)
\(\Leftrightarrow\left(\sqrt{2x+17}+\sqrt{2x+1}\right)^2\ge16x\)
\(\Leftrightarrow\sqrt{\left(2x+17\right)\left(2x+1\right)}\ge6x-9\)
\(\Leftrightarrow x\in\left\{\frac{3}{2},4\right\}\)
Theo đk, ta có tập nghiệm của bpt là S= \(\left\{0;4\right\}\)
\(\left\{{}\begin{matrix}3x+1\ge2x+7\\4x+3>2x+19\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge6\\2x>16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge6\\x>8\end{matrix}\right.\) \(\Rightarrow x>8\)
Ko có đáp án nào giống hoàn toàn, đáp án C là tập con của \(\left(8;+\infty\right)\) nên chấp nhận cũng được
a) Vẽ đường thẳng \(3+2y=0\). Vì điểm O(0;0) có tọa độ thõa mãn bất phương trình nên phần không tô màu là miền nghiệm của bất phương trình:
TenAnh1
TenAnh1
A = (-4.34, -5.96)
A = (-4.34, -5.96)
A = (-4.34, -5.96)
B = (11.02, -5.96)
B = (11.02, -5.96)
B = (11.02, -5.96)
D = (10.28, -5.54)
D = (10.28, -5.54)
D = (10.28, -5.54)
F = (9.98, -5.84)
F = (9.98, -5.84)
F = (9.98, -5.84)
b) Tương tự:
TenAnh1
TenAnh1
A = (-4.34, -5.96)
A = (-4.34, -5.96)
A = (-4.34, -5.96)
B = (11.02, -5.96)
B = (11.02, -5.96)
B = (11.02, -5.96)
D = (10.28, -5.54)
D = (10.28, -5.54)
D = (10.28, -5.54)
F = (9.98, -5.84)
F = (9.98, -5.84)
F = (9.98, -5.84)
H = (10.64, -5.76)
H = (10.64, -5.76)
H = (10.64, -5.76)