\(\frac{n^3-2n^2+3}{n-2}\)nhận giá trị nguyên l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Gọi biểu thức trên là A

Ta có

\(A=\frac{n^3-2n^2+3}{n-2}\)

\(A=\frac{n^2\left(n-2\right)+3}{n-2}\)

Để \(A\in Z\Leftrightarrow\left(n-2\right)\in U\left(3\right)\)

Vậy ta có:

\(n-2=-3\\ \Rightarrow n=-1\)

\(n-2=-1\\ \Rightarrow n=1\)

\(n-2=1\\ \Rightarrow n=3\)

\(n-2=3\\ \Rightarrow n=5\)

2 tháng 8 2019

\(\left(-2\right).\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right).....\left(-1\frac{1}{2013}\right)\)

\(=\left(-2\right).\left(\frac{-3}{2}\right)\left(-\frac{4}{3}\right)......\left(\frac{-2014}{2013}\right)\)

\(=\frac{\left(-2\right).\left(-3\right).\left(-4\right)....\left(-2014\right)}{2.3.....2013}\)

\(=\frac{2.3.4....2014\left(\text{Vì có 2014 thừa số âm }\right)}{2.3....2013}\)

\(=\frac{\left(2.3.4....2013\right).2014}{2.3....2013}\)

\(=2014\)

29 tháng 7 2015

Để phân số trên nhận giá trị nguyên 

=> n3-2n2+3 chia hết cho n-2

=> n2(n-2)+3 chia hết cho n-2

Vì n2(n-2) chia hết cho n-2

=> 3 chia hết cho n-2

=> n-2 thuộc Ư(3)

n-2n
13
-11
35
-3-1  

KL: n thuộc .........................

2 tháng 1 2022

Các n thỏa mãn\(\hept{\begin{cases}n\inℤ\\n>1\end{cases}}\)

bởi \(A=\frac{2\sqrt{n-1}}{\sqrt{n-1}}=2\)không phụ thuộc vào giá trị của biến nên chỉ cần điều kiện xác định của phân thức và căn bậc hai thôi.

23 tháng 4 2017

a/ mk chua tim ra , thong cam 

b/ mk tìm n = -2 ., -1 hoặc 0

7 tháng 12 2016

Để P là số nguyên

=> 2n-1 Chia hết cho n-1

     2n-2+1 Chia hết cho n-1

     2(n-1) +1 Chia hết cho n-1

 Có 2(n-1) chia hết cho n-1

 => 1 chia hết cho n-1

=> n-1 \(\in\)Ư(1)

Lập bảng rồi bạn tự tính nhé

7 tháng 12 2016

Trùng tên. Mk thấy tên Ngọc Nhi ít người có lắm mak. Mk cũng tên lak Ngọc Nhi

2 tháng 12 2019

Ta có: P = \(\frac{2n-1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)

Để P \(\in\)Z <=> 1 \(⋮\)n - 1 <=> n - 1 \(\in\)Ư(1) = {1; -1}

Với n - 1 = 1 => n = 1 + 1 = 2

     n - 1 = -1 => n = -1 + 1 = 0

Vậy ...

14 tháng 12 2016

\(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)

\(\Rightarrow P\in Z\Leftrightarrow2+\frac{1}{n-1}\in Z\Leftrightarrow\frac{1}{n-1}\in Z\Leftrightarrow1⋮n-1\Leftrightarrow n-1\inƯ\left(1\right)\)

\(\Rightarrow n-1\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\)

13 tháng 12 2016

\(\frac{2n-1}{n-1}\in Z\)

\(\Rightarrow2n-1⋮n-1\)

\(\Rightarrow\left(2n-1\right)-\left(n-1\right)⋮\left(n-1\right)\)

\(\Rightarrow2⋮\left(n-1\right)\)

Bảng:

n-1-112-2
n023-1

 

Vậy \(n\in\left\{0;-1;2;3\right\}\)