Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)=x(x+1)(x-1)(x+2)-24
=(x2+x)(x2+x-2)-24
Đặt t=x2+x-1 có
(t+1)(t-1)-24
tương đương (t-5)(t+5)
Thay t=x2+x-1 có
(x2+x-6)(x2+x+4)
suy ra x=2 x=-3
Trả lời :
1) x2+8x+21
= x^2 + 8x + 16 +5
= (x + 4 )^2 +5 lớn hơn hoặc bằng 5
Vậy giá tri nhỏ nhất của biểu thức bằng 5 khi x +4 =0 hay x=-4
2) f(x) = x^3 +x ^2 +x +1 =0
= (x^3 +x ^2) +(x +1) =0
= x^2 (x + 1 ) + (x +1 ) =0
= (x ^2 +1 )(x +1) =0
Xảy ra hai trường hợp :
x^2 +1=0 hoặc x + 1 =0
mà x^2 +1 >0 nên chỉ x + 1 =0 hay x= -1
Câu 3 gợi ý thôi bạn khai triển ra rồi thu gọn lại .
Học tốt
\(\left(5x+3y\right)^2-\left(3y-1\right)\left(3y+1\right)-\left(4-5x\right)^2-10x\left(3y+4\right)\\ =25x^2+9y^2+30xy-\left(9y^2-1\right)-\left(16-40x+25x^2\right)-\left(30xy+40x\right)\\ =25x^2+9y^2+30xy-9y^2+1-16+40x-25x^2-30xy-40x\\ =\left(25x^2-25x^2\right)+\left(9y^2-9y^2\right)+\left(30xy-30xy\right)+\left(40x-40x\right)+\left(1-16\right)\\ =-15\)