Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a
x phải dương và x khác 4
câu b
x = 9 P = 4
x = 4 P không xác định vì mẫu số= 0
Câu c
P ≤ 0 thì | P| > P
hết giờ rôi bạn hiền
ĐK: \(x\ne25,x\ge0\).
\(T=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{5}{\sqrt{x}+5}-\frac{10\sqrt{x}}{x-25}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+5\right)-5\left(\sqrt{x}-5\right)-10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{x+5\sqrt{x}-5\sqrt{x}+25-10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}-5}{\sqrt{x}+5}=1-\frac{10}{\sqrt{x}+5}\)
\(T\)nguyên mà \(x\)nguyên nên \(\sqrt{x}+5\inƯ\left(10\right)\)mà \(\sqrt{x}+5\ge5\)nên \(\orbr{\begin{cases}\sqrt{x}+5=5\\\sqrt{x}+5=10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=25\left(l\right)\end{cases}}\).
a, Với \(x>0;x\ne1\)
\(P=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)
\(=\left(\frac{x-1}{2\sqrt{x}}\right)^2\left(\frac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)
\(=\frac{x^2-2x+1}{4x}.\frac{-4\sqrt{x}}{x-1}=\frac{1-x}{\sqrt{x}}\)
Thay x = 4 => \(\sqrt{x}=2\)vào P ta được :
\(\frac{1-4}{2}=-\frac{3}{2}\)
c, Ta có : \(P< 0\Rightarrow\frac{1-x}{\sqrt{x}}< 0\Rightarrow1-x< 0\)vì \(\sqrt{x}>0\)
\(\Rightarrow-x< -1\Leftrightarrow x>1\)