\(\dfrac{\Pi}{4}\)).tan(\(\Pi\)-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

Bài tập này áp dụng công thức phụ - chéo:

cot(a)=tan(\(\dfrac{\Pi}{2}\)-a) (cái này chắc bạn không quên chứ hihi)

Điều kiện: cos(2x+\(\dfrac{\Pi}{4}\))\(\ne\)0<=>x\(\ne\)\(\dfrac{\Pi}{8}\)+\(\dfrac{k\Pi}{2}\)

cos(\(\Pi\)-\(\dfrac{x}{2}\))\(\ne\)0<=>x\(\ne\)\(\Pi\)-2\(\Pi\)

PT<=>tan(2x+\(\dfrac{\Pi}{4}\))=\(\dfrac{1}{tan\left(\Pi-\dfrac{x}{2}\right)}\)

<=>tan(2x+\(\dfrac{\Pi}{4}\))=cot(\(\Pi\)-\(\dfrac{x}{2}\))

<=>tan(2x+\(\dfrac{\Pi}{4}\))=tan(\(\dfrac{\Pi}{2}\)-\(\Pi\)+\(\dfrac{x}{2}\))

<=>2x+\(\dfrac{\Pi}{4}\)=\(\dfrac{\Pi}{2}\)-\(\Pi\)+\(\dfrac{x}{2}\)

<=>x=-\(\dfrac{\Pi}{2}\)+k\(\dfrac{2\Pi}{3}\)(k\(\in\)Z)

Chúc bạn học tốt. Thân!

\(\dfrac{\Pi}{4}\)\(\Pi\)\(\Pi\)

18 tháng 5 2017

a) \(x=-45^0+k90^0,k\in\mathbb{Z}\)

b) \(x=-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)

c) \(x=\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)

d) \(x=300^0+k540^0,k\in\mathbb{Z}\)

NV
22 tháng 12 2018

ĐKXĐ: \(cosx\ne0\Rightarrow x\ne\dfrac{\pi}{2}+k\pi\)

\(\dfrac{tan^2x+tanx}{tan^2x+1}=\dfrac{\sqrt{2}}{2}sin\left(\dfrac{\pi}{4}+x\right)\)

\(\Leftrightarrow cos^2x\left(tan^2x+tanx\right)=\dfrac{\sqrt{2}}{2}\left(sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx\right)\)

\(\Leftrightarrow sin^2x+sinxcosx=\dfrac{1}{2}\left(sinx+cosx\right)\)

\(\Leftrightarrow sinx\left(sinx+cosx\right)-\dfrac{1}{2}\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx-\dfrac{1}{2}\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx+cosx=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\\sqrt{2}.sin\left(x+\dfrac{\pi}{4}\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\x=\dfrac{-\pi}{4}+k\pi\end{matrix}\right.\)

22 tháng 12 2018

có thể giải thích rõ ở dấu tương đương 1 và 2 cho em hiểu làm sao để rút gọn nó thành như vậy được không ạ

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

31 tháng 8 2017

1/
pt<=>tan(3x+2)=tan\(\dfrac{\Pi}{3}\)
<=>x=\(\dfrac{\Pi}{9}\)-\(\dfrac{2}{3}\)+\(\dfrac{k\Pi}{3}\)(k thuộc Z) (*)

mà x\(\in\)(\(-\dfrac{\Pi}{2}\);\(\dfrac{\Pi}{2}\))

<=>\(-\dfrac{\Pi}{2}\)<\(\dfrac{\Pi}{9}\)-\(\dfrac{2}{3}\)+\(\dfrac{k\Pi}{3}\)<\(\dfrac{\Pi}{2}\)(bạn giải bất pt với nghiệm là ''k'' nha)

<=>-1,1296....<k<1,803....

Mà k thuộc Z =>k={-1;01}

Thay các giá trị của k vào (*) ta được:

\(\left[{}\begin{matrix}x=-\dfrac{2\Pi}{9}-\dfrac{2}{3}\\x=\dfrac{\Pi}{9}-\dfrac{2}{3}\\x=\dfrac{4\Pi}{9}-\dfrac{2}{3}\end{matrix}\right.\)

Vậy.............

2/ Là tương tự cho quen nha!

15 tháng 9 2019

sao ra đc -1,1296... vậy

28 tháng 4 2017

Tôi chẳng thể hiểu nổi

28 tháng 6 2018

giúp mk với

3 tháng 4 2017

a) tan(2x + 1)tan(3x - 1) = 1 ⇔ frac{sin(2x + 1)sin(3x - 1)}{cos(2x + 1)cos(3x - 1)} = 1.

Với điều kiện cos(2x + 1)cos(3x - 1) ≠ 0 phương trình tương đương với

cos(2x + 1)cos(3x - 1) - sin(2x + 1)sin(3x - 1) = 0

⇔ cos(2x + 1 + 3x - 1) = 0 ⇔ 5x = frac{prod }{2} + k π ⇔ x = frac{prod }{10} + frac{kprod }{5}, k ∈ Z.

Cần chọn các k nguyên để x = frac{prod }{10} + frac{kprod }{5} không thỏa mãn điều kiện của phương trình (để loại bỏ). Điều này chỉ xảy ra trong các trường hợp sau:

(i) x = frac{prod }{10} + frac{kprod }{5} làm cho cos(2x + 1) = 0, tức là

cos[2(frac{prod }{10} + frac{kprod }{5}) + 1] = 0 ⇔ frac{(1 + 2k)prod }{5} + 1 = frac{prod }{2} + lπ, (l ∈ Z)

⇔ π(frac{2l + 1}{2} - frac{2k + 1}{5}) = 1 ⇔ π = frac{1}{(frac{2l + 1}{2} - frac{2k + 1}{5})}, suy ra π ∈ Q, vô lí.

Vì vậy không có k nguyên nào để x = frac{prod }{10} + frac{kprod }{5} làm cho cos(2x + 1) = 0.

(ii) x = frac{prod }{10} + frac{kprod }{5} làm cho cos(3x - 1) = 0. Tương tự (i),ta cũng thấy không có k nguyên nào để x = frac{prod }{10} + frac{kprod }{5} làm cho cos(3x - 1) = 0.

Vậy ∀ k ∈ Z, x = frac{prod }{10} + frac{kprod }{5} đều là nghiệm của phương trình đã cho.

b)Đặt t = tan x, phương trình trở thành

t + frac{t + 1}{1 - t}= 1 ⇔ -t2 + 3t = 0 (điều kiện t ≠ 1) ⇔ t = 0 hoặc t = 3 (thỏa mãn)

Vậy tan x = 0 ⇔ x = kπ

tan x = 3 ⇔ x = arctan 3 + kπ (k ∈ Z)