Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{AB}{AC}=\frac{1}{3}\Rightarrow AB=\frac{AC}{3}\)
Xét tam giác ABC vuông tại A, đường cao AH
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{36}=\frac{1}{\left(\frac{AC}{3}\right)^2}+\frac{1}{AC^2}\Rightarrow AC=6\sqrt{10}\)
=> \(AB=\frac{6\sqrt{10}}{3}=2\sqrt{10}\)
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow BC=\frac{AB.AC}{AH}=\frac{120}{6}=20\)
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{40}{20}=2\)
=> CH = BC - BH = 20 - 2 = 18
cho tam giác ABC vuông tại A, đường cao AH
Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng hệ thức : \(AB.AC=AH.BC=9\sqrt{18}=27\sqrt{2}\)(1)
Theo định lí Pytago ta có : \(AB^2+AC^2=BC^2=81\)(2)
Từ (1) ; (2) ta có hệ phương trình \(\hept{\begin{cases}AB.AC=27\sqrt{2}\\AB^2+AC^2=81\end{cases}}\)
bạn dùng phương pháp thế giải hệ này nhé
Giả sử \(\Delta ABC\)vuông tại A, đường cao AH, khi đó theo đề bài, ta có \(BC=9,AH=\sqrt{18}\). Ta cần tính AB, AC.
Đặt \(BH=x\left(0< x< 9\right)\), dễ thấy \(CH=BC-BH=9-x\)
\(\Delta ABC\)vuông tại A, đường cao AH \(\Rightarrow AH^2=BH.CH\left(htl\right)\)\(\Rightarrow\left(\sqrt{18}\right)^2=x\left(9-x\right)\)
\(\Leftrightarrow18=9x-x^2\)\(\Leftrightarrow x^2-9x+18=0\)\(\Leftrightarrow x^2-3x-6x+18=0\)\(\Leftrightarrow x\left(x-3\right)-6\left(x-3\right)=0\)\(\Leftrightarrow\left(x-3\right)\left(x-6\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-6=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}BH=3\\BH=6\end{cases}}\)
Khi \(BH=3\), hiển nhiên \(CH=BC-BH=9-3=6\)
\(\Delta ABC\)vuông tại A, đường cao AH \(\Rightarrow\hept{\begin{cases}AB^2=BH.BC\left(htl\right)\\AC^2=CH.BC\left(htl\right)\end{cases}}\Rightarrow\hept{\begin{cases}AB=\sqrt{BH.BC}=\sqrt{3.9}=3\sqrt{3}\\AC=\sqrt{CH.BC}=\sqrt{6.9}=3\sqrt{6}\end{cases}}\)
Nếu \(BH=6\)thì ngược lại, ta có \(\hept{\begin{cases}AB=3\sqrt{6}\\AC=3\sqrt{3}\end{cases}}\)
Như vậy độ dài 2 cạnh góc vuông của tam giác này là \(3\sqrt{3}\)và \(3\sqrt{6}\)
Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên ta có
a+b-c>0; b+c-a>0; b+c-a>0
áp dụng BĐT \(\frac{1}{x}\)+\(\frac{1}{y}\)\(\ge\)\(\frac{4}{x+y}\) ta có:
\(\frac{1}{a+b-c}\)+\(\frac{1}{b+c-a}\)=\(\ge\)\(\frac{4}{a+b-c+b+c-a}\)=\(\frac{4}{2b}\)=\(\frac{2}{b}\)(1)
\(\frac{1}{a+b-c}\)+\(\frac{1}{c+a-b}\)\(\ge\)\(\frac{4}{a+b-c+c+a-b}\)=\(\frac{4}{2a}\)=\(\frac{2}{a}\)(2)
\(\frac{1}{b+c-a}\)+\(\frac{1}{c+a-b}\)\(\ge\)\(\frac{4}{b+c-a+c+a-b}\)=\(\frac{4}{2c}\)=\(\frac{2}{c}\)(3)
cộng vế với vế của(1);(2) và (3) ta có:
\(\frac{2}{a+b-c}\)+\(\frac{2}{b+c-a}\)+\(\frac{2}{c+a-b}\)\(\ge\)\(\frac{2}{b}\)+\(\frac{2}{a}\)+\(\frac{2}{c}\)
<=>\(\frac{1}{a+b-c}\)+\(\frac{1}{b+c-a}\)+\(\frac{1}{c+a-b}\)\(\ge\)\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)
dấu = xảy ra khi a=b=c
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{100}=\frac{1}{\left(\frac{5}{2}AC\right)^2}+\frac{1}{AC^2}\Leftrightarrow AC^2=116\)
\(\Rightarrow AB^2=\left(\frac{5}{2}AC\right)^2=725\)
\(BH=\sqrt{AB^2-AH^2}=\sqrt{725-100}=25\)
\(CH=\sqrt{AC^2-AH^2}=\sqrt{116-100}=4\)
-08765redxcvbnkoiuytfdswsqlaxzxcvwqkasavbfewq