K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LK
0
21 tháng 2 2022
Theo định lí Pytago tam giác DEF vuông tại D
\(DE=\sqrt{FE^2-DF^2}=12\)
Ta có \(S_{DEF}=\frac{1}{2}.DE.DF;S_{DEF}=\frac{1}{2}.DH.FE\)
\(\Rightarrow DE.DF=DH.FE\Rightarrow DH=\frac{DE.DF}{FE}=\frac{48}{5}\)
9 tháng 2 2021
I H K L
Xét \(\Delta IKL\) vuông tại I có:
\(KL^2=IK^2+IL^2\) (định lí Pytago)
\(\Rightarrow IK^2=KL^2-IL^2=26^2-10^2=576\)
\(\Rightarrow IK=\sqrt{576}=24\) (vì \(IK>0\))
Ta có: \(S_{\Delta IKL}=\frac{IK.IL}{2}=\frac{IH.KL}{2}\)
\(\Rightarrow IK.IL=IH.KL\)
hay \(24.10=26IH\)
\(\Rightarrow HI=\frac{24.10}{26}=\frac{120}{13}\)
Vậy \(HI=\frac{120}{13}\).
DD
Đoàn Đức Hà
Giáo viên
22 tháng 1 2021
Độ dài đường chéo của hình chữ nhật là: \(\sqrt{5^2+2^2}=\sqrt{29}\left(cm\right)\)
E F G H
Xét \(\Delta EFG\) vuông tại E có: \(GF^2=EG^2+EF^2\) (định lí Pytago)
\(\Rightarrow EF^2=GF^2-EG^2=10^2-6^2=64\)
\(\Rightarrow EF=\sqrt{64}=8\left(cm\right)\)
Ta có: \(S_{\Delta ABC}=\frac{EG.EF}{2}=\frac{EH.GF}{2}\)
\(\Rightarrow EG.EF=EH.GF\)
\(6.8=10EH=48\)
\(\Rightarrow EH=48\div10=4,8\left(cm\right)\)
Vậy \(EH=4,8cm\).
Áp dụng định lý Py ta go vào \(\Delta EFG\)ta có ;
\(FG^2=EF^2+EG^2\)
\(=>EF^2=10^2-6^2\)
\(=>EF=8cm\)
Xét \(\Delta FHE\)và \(\Delta FEG\)ta có:
\(F\)chung
\(FHE=FEG=90\)
\(=>\Delta FHE\approx\Delta FEG\)(g.g)
\(=>\frac{HE}{EG}=\frac{EF}{FG}\)
\(=>\frac{HE}{6}=\frac{8}{10}\)
\(=>EF=4,8cm\)