K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2018

C D E I

Em xét hai tam giác đồng dạng DEC và DCI

30 tháng 11 2018

\(S_{ABC}=\frac{CE.CD}{2},S_{ABC}=\frac{DE.CI}{2}\Rightarrow CE.CD=DE.CI\)

1) Xét ΔCDE vuông tại D và ΔAHB vuông tại H có 

\(\widehat{DCE}=\widehat{HAB}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔCDE\(\sim\)ΔAHB(g-g)

a) Xét ΔBHA vuông tại H và ΔBAC vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔBHA\(\sim\)ΔBAC(g-g)

Suy ra: \(\dfrac{BA}{BC}=\dfrac{BH}{BA}\)

hay \(BA^2=BH\cdot BC\)

b) Xét ΔCHI vuông tại H và ΔCKB vuông tại K có 

\(\widehat{ICH}\) chung

Do đó: ΔCHI\(\sim\)ΔCKB(g-g)

Suy ra: \(\dfrac{CH}{CK}=\dfrac{CI}{CB}\)

hay \(CH\cdot CB=CK\cdot CI\)

Vào TK mk nhá ! Nguồn h o c 2 4 270264

Ôn tập chương II - Đa giác. Diện tích đa giác

Ôn tập chương II - Đa giác. Diện tích đa giác

Ôn tập chương II - Đa giác. Diện tích đa giác

9 tháng 6 2021

bạn ơi góc HEC có vuông đâu

 

a: Xét ΔCKB vuông tại K và ΔCHI vuông tại H có

góc KCB chung

=>ΔCKB đồng dạng với ΔCHI

=>CK/CH=CB/CI

=>CK*CI=CH*CB=CA^2

b: Xét ΔBHD vuông tại H và ΔBKC vuông tại K có

góc KBC chung

=>ΔBHD đồng dạng với ΔBKC

=>BH/BK=BD/BC

=>BD*BK=BH*BC=BA^2

c: BA^2=BD*BK

BA=BM

=>BM^2=BD*BK

=>ΔBMD vuông tại M

=>góc BMD=90 độ

d: SỬa đề: EA/EB*NB/NC*FC/FA

=NA/NB*NB/NC*NC/NA

=1

a: Xét tứ giác BHCD có 

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: Xét ΔABK vuông tại K và ΔACI vuông tại I có

góc BAK chung

Do đó: ΔABK\(\sim\)ΔACI

Suy ra: AB/AC=AK/AI

hay \(AB\cdot AI=AK\cdot AC\)

c: Xét ΔAIK và ΔACB có

AI/AC=AK/AB

góc A chung

Do đó: ΔAIK\(\sim\)ΔACB

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc HBA chung

Do đó: ΔABC\(\sim\)ΔHBA

b: Xét ΔCAI vuông tại A và ΔCHK vuông tại H có

\(\widehat{ACI}=\widehat{HCK}\)

Do đó: ΔCAI\(\sim\)ΔCHK

SUy ra: CA/CH=CI/CK

hay \(CA\cdot CK=CI\cdot CH\)

2 tháng 11 2017


Phía trong của hình vuông ABCD ta dựng tam giác đều ADK. Ta có AD = AK = DK.
\(\widehat{DAK}=90^o-\widehat{KAD}=30^o\).
Do AB = AK (cùng bằng AD) nên tam giác BAK cân tại A.
Suy ra \(\widehat{ABK}=\widehat{AKB}=\frac{180^o-\widehat{BAK}}{2}=75^o\).
Suy ra \(\widehat{BKC}=90^o-\widehat{ABK}=15^o\).
Tương tự ta cũng có \(\widehat{KDC}=30^o,\widehat{DCK}=75^o,\widehat{KCB}=15^o\).
Dễ dàng chứng minh được \(\Delta ABE=\Delta BKC\left(g.c.g\right)\) nên AE = BE = BK = KC.
Từ đó ta chứng minh được \(\Delta AED=\Delta CDK\left(c.g.c\right)\).
Suy ra \(\widehat{ADE}=\widehat{KDC}=30^o\).
Suy ra tam giác CDE đều.