Tam giac AED(BC//ED). AB=4 AE=6 AC=2 BC=3. Tính AD, ED, CD
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2022

Vì BC // ED Theo hệ quả Ta lét 

\(\frac{AB}{AE}=\frac{AC}{AD}=\frac{BC}{ED}\Rightarrow AD=\frac{AC.AE}{AB}=3\)

\(\Rightarrow ED=\frac{BC.AE}{AB}=\frac{18}{4}=\frac{9}{2}\)

=> AD - AC = CD = 3 - 2 = 1 

7 tháng 2 2022

Ban cho mik nhìn tam giác đó mik sẽ hiểu hơn đấy

Nếu ko có thì thôi vây

HT

4 tháng 2 2021

a/

Ta có

ED//BC\(\frac{AE}{AB}=\frac{AD}{AC}\Rightarrow\frac{6}{8}=\frac{AD}{20}\Rightarrow AD=\frac{20.6}{8}=15cm\)

b/

Ta có

AE=EF=6 cm (F đối xứng A qua E)

BE=AB-AE=8-6=2 cm

FB=EF-BE=6-2=4 cm

Do ED//BC nên

\(\frac{FB}{EF}=\frac{BI}{ED}\Rightarrow\frac{4}{6}=\frac{BI}{ED}=\frac{2}{3}\)

\(\frac{BC}{ED}=\frac{AB}{AE}=\frac{8}{6}=\frac{4}{3}\)

\(\Rightarrow\frac{BC}{ED}+\frac{BI}{ED}=\frac{4}{3}+\frac{2}{3}=\frac{6}{3}=2\left(dpcm\right)\)

1 tháng 5 2016

câu 1

ta có BD là phân giác tam giác ABC

suy ra AB phần BC bằng AD phần DC bằng 3 phần 2 mà AD cộng DC bằng 6

suy ra AD bằng 6 nhân 3 chia 5 bằng 18 phần 5

xét tam giác ABD và tam giác ACE có

góc A chung

góc ABD bằng góc ACE

vậy tam giác ABD đồng dạng tam giác ACE (g-g)

suy ra AB phần AD bằng AC phần AE

mà góc A chung

vậy tam giác AED đồng dạng tam giác ACB(c-g-c)

suy ra AD phần ED bằng AB phần BC

thế số vào ta được ED bằng 12 phần 5

câu 2 lỡ chứng minh trên rùi

câu 3xét tam giác BEI và tam giác CDI có

góc EBI bằng góc DCI

góc EIB bằng góc DIC ( đối đỉnh )

vậy tam giác BEI đồng dạng tam giác CDI (g-g)

suy ra BE phần IE bằng CD phần ID

tương đương IE nhân CD bằng ID nhân BE

câu cuối

ta có tam giác AED phần tam giác ABC bằng k bình phương

Tam giác AED phần tam giác ABC bằng AD phần AB tất cả bình phương

tương đương AD bình chia cho AB bình băng 9 phần 25 tức là AD chiếm 9 phần AB chiếm 25 phần

ta lấy 6 nhân 9 chia 25 bằng 54 phần 25

17 tháng 3 2016

trình bày hơi dài nên m viết cách cm thôi nhé

a) áp dụng tính chất phân giác của 1 tam giác có AD/DC = AB/BC= 6/4 = 3/2

=> AD/AC = 3/5 => AC= 18/5 (cm)

tương tự thì AD= 18/5 (cm)

b) 2 tam giác ADB và AEC đồng dạng vì chung góc BAC, ^ABC= ^ECA( vì ^ABC =^ACB)

c) cm 2 tam giác BEI và CDI đồng dạng (c.g.c) => IE.CD=ID.BE

d)có thể cm SAED = 9/25. SABC = 9/25. 60 = 21,6(cm2)

mình làm k biết đúng k bạn thông cảm nhé :)

a: Xét ΔABC và ΔAED có

AB/AE=AC/AD

góc BAE chung

Do đó: ΔABC\(\sim\)ΔAED

b: Xét ΔFBD và ΔFEC có

\(\widehat{FDB}=\widehat{FCE}\left(=\widehat{ADE}\right)\)

góc BFD chung

Do đó: ΔFBD\(\sim\)ΔFEC

c: BD=AB-AD=4,8-3,2=1,6(cm)

EC=AC-AE=6,4-2,4=4(cm)

Ta có: ΔADE\(\sim\)ΔACB

nên DE/CB=AD/AC=3,2/6,4=1/2

=>DE=1,8(cm)