Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a/ Trên tia đối của tia $MA$ lấy $K$ sao cho $MA=MK$
Dễ thấy $\triangle BMA = \triangle CMK$ (c.g.c)
$\Rightarrow AB=CK$ và $\widehat{B_1}=\widehat{C_1}$
Mà 2 góc này ở vị trí so le trong nên $AB\parallel CK$
Mà $AB\perp AC\Rightarrow CK\perp AC$
Xét tam giác $BAC$ và $KCA$ có:
$CA$ chung
$AB=CK$ (cmt)
$\widehat{BAC}=\widehat{KCA}=90^0$
$\Rightarrow \triangle BAC=\triangle KCA$ (c.g.c)
$\Rightarrow BC=KA$
$\Rightarrow BC:2=KA:2$ hay $BM=AM$ (đpcm)
b. Tam giác $MBA$ cân tại $M$ (do $AM=BM$) nên đường trung tuyến $MF$ đồng thời là đường cao ứng với cạnh đáy $AB$
$\Rightarrow MF\perp AB$
c. Vì $MF\perp AB$ nên $S_{ABM}=MF.AB:2$
$S_{ABC}=CA.AB:2$
Mà $2S_{ABM}=S_{ABC}$ nên $MF.AB=CA.AB:2$
$\Rightarrow MF=AC:2(1)$
Xét tam giác vuông $HAC$ có trung tuyến $HE$. Ứng dụng kết quả của phần a: Tam giác vuông $BAC$ có trung tuyến AM bằng $MB$ và bằng 1 nửa cạnh huyền. Khi đó $HE=AC:2(2)$
Từ $(1);(2)\Rightarrow HE=MF$
a)\(\Delta ABH\) vuông tại H có:
BH2 =AB2 -AH2 =132 -122 =25( ĐL Pytago)
=> BH=5 cm
BC=BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có:
AH2 + HC2 =AC2 ( đl Pytago)
=> AC2 =122 + 162 =20 cm
b) \(\Delta AHB\) vuông tại H có: AB2 = AH2 +BH2 ( ĐL Pytago)
=> BH2 =AB2 - AH2 =132 - 122 =25
=> BH=5 cm
BC= BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có: AC2 = AH2 +HC2 ( đL Pytago)
=> AC2 = 122 + 162 =400
=> AC= 20 cm
Giúp em nhanh với
ko