\(\frac{2}{AD^{^2}}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔABH vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

2: \(AE\cdot AB+AF\cdot AC=AH^2+AH^2=2AH^2\)

4: \(4\cdot OE\cdot OF=2OE\cdot2OF=FE\cdot AH=AH^2\)

\(HB\cdot HC=AH^2\)

Do đó: \(4\cdot OE\cdot OF=HB\cdot HC\)

21 tháng 7 2020

vì tam giác ABC vuông tại A trung tuyến AD nên AD=DB=DC=1/2 BC=1/2 *32=16

Ta có: \(\frac{AH}{AD}=\frac{3}{4}\Leftrightarrow\frac{AH}{16}=\frac{3}{4}\)

\(\Rightarrow AH=\frac{3\cdot16}{4}=12\)

Lại có: \(AH^2=BH\cdot CH=\left(BD-HD\right)\left(DC+HD\right)\)\(=\left(16-HD\right)\left(16+HD\right)=16^2-HD^2\)

\(\Leftrightarrow12^2=16^2-HD^2\Rightarrow HD=\sqrt{16^2-12^2}=\sqrt{112}=4\sqrt{7}\)

Diện tích AHD=\(\frac{1}{2}\cdot AH\cdot HD=\frac{1}{2}\cdot12\cdot4\sqrt{7}=24\sqrt{7}\)

8 tháng 7 2018

A B C H D K

a) Ta có: \(1+1=2\Leftrightarrow\frac{AB^2}{AB^2}+\frac{AC^2}{AC^2}=2\Leftrightarrow\frac{BC^2-AC^2}{AB^2}+\frac{BC^2-AB^2}{AC^2}=2\)

\(\Leftrightarrow\frac{BC^2}{AB^2}+\frac{BC^2}{AC^2}-\frac{AC^2}{AB^2}-\frac{AB^2}{AC^2}=2\)(*)

Lại có: \(\Delta\)DHA ~ \(\Delta\)ABC (g.g) \(\Rightarrow\frac{BC}{AB}=\frac{AH}{HD}\Leftrightarrow\frac{BC^2}{AB^2}=\frac{AH^2}{HD^2}\)(1)

\(\Delta\)ABC ~ \(\Delta\)KAH (g.g) \(\Rightarrow\frac{BC}{AC}=\frac{AH}{HK}\Leftrightarrow\frac{BC^2}{AC^2}=\frac{AH^2}{HK^2}\)(2)

\(\Delta\)ABC ~ \(\Delta\)HBA (g.g) \(\Rightarrow\frac{AC}{AB}=\frac{AH}{BH}\Leftrightarrow\frac{AC^2}{AB^2}=\frac{AH^2}{BH^2}\)(3)

Tương tự: \(\frac{AB}{AC}=\frac{AH}{CH}\Leftrightarrow\frac{AB^2}{AC^2}=\frac{AH^2}{CH^2}\)(4).

Thay hết (1); (2); (3) và (4) vào (*) ta được: \(\frac{AH^2}{HD^2}+\frac{AH^2}{HK^2}-\frac{AH^2}{BH^2}-\frac{AH^2}{CH^2}=2\)

\(\Leftrightarrow\frac{1}{HD^2}+\frac{1}{HK^2}-\frac{1}{BH^2}-\frac{1}{CH^2}=\frac{2}{AH^2}\)(Chia cả 2 vế cho AH2)

\(\Leftrightarrow\frac{1}{HD^2}+\frac{1}{HK^2}=\frac{1}{BH^2}+\frac{1}{CH^2}+\frac{2}{AH^2}\)(đpcm).

b) Ta có: \(\Delta\)ABC ~ \(\Delta\)DBH (g.g) \(\Rightarrow\frac{AB}{AC}=\frac{DB}{DH}\)

\(\Delta\)ABC ~ \(\Delta\)KHC (g.g) \(\Rightarrow\frac{AB}{AC}=\frac{HK}{KC}\). Nhân theo vế 2 hệ thức trên:

\(\Rightarrow\frac{AB^2}{AC^2}=\frac{DB.HK}{KC.DH}\Leftrightarrow\frac{AB^2}{AC^2}.\frac{DH}{HK}=\frac{DB}{KC}\)(5)

Dễ chứng minh tứ giác ADHK là hình chữ nhật \(\Rightarrow\frac{DH}{HK}=\frac{AK}{AD}\)

Mà \(\Delta\)DAK ~ \(\Delta\)CAB (g.g) \(\Rightarrow\frac{AK}{AD}=\frac{AB}{AC}\)\(\Rightarrow\frac{DH}{HK}=\frac{AB}{AC}\)(6)

Từ (6) & (5) \(\Rightarrow\frac{AB^2}{AC^2}.\frac{AB}{AC}=\frac{DB}{KC}\Leftrightarrow\frac{AB^3}{AC^3}=\frac{DB}{KC}\)(đpcm).

c) Theo hệ thức lượng trong tam giác vuông: \(BH^2=BD.AB;\) \(CH^2=CK.AC\)

\(\Rightarrow\left(BH.CH\right)^2=BD.AB.CK.AC=BD.CK.AB.AC\)

Mặt khác: \(S_{ABC}=\frac{AB.AC}{2}=\frac{AH.BC}{2}\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow\left(BH.CH\right)^2=BD.CK.BC.AH\).

Lại có: \(AH^2=BH.CH\)(Hệ thức lượng) 

\(\Rightarrow AH^4=BD.CK.BC.AH\Leftrightarrow AH^3=BD.CK.BC\)(đpcm).

13 tháng 7 2018

Kurokawa neko: câu a bạn có thể giải theo hệ thức lượng sẽ ngắn và đơn giản hơn nhiều