Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC có :
A + ABC + ACB = 180 *
=> ABC + ACB = 180* - a
Mà BC là phân giác ABC
=> ABD = CBD = \(\frac{1}{2}ABC\)
Mà CE là phân giác ACB
=> ACE = BCE = \(\frac{ACB}{2}\)
=> ECB + DBC = \(\frac{ACB+ABC}{2}\)= \(\frac{180-a}{2}\)
Xét tam giác OBC có :
OBC + OCB + BOC = 180*
=> BOC = 180* - ( OBC + OCB)
=> BOC = 180* - \(\frac{180-a}{2}\)
=> BOC =\(\frac{a}{2}\)(dpcm)
Cho mik lm lại:
a) Ta có: \(\frac{A}{1}\)=\(\frac{B}{3}\)=\(\frac{C}{5}\)=\(\frac{A+B+C}{1+3+5}\)=\(\frac{180}{9}\)= 20
Vậy A=1.20 = 20 độ
B=3.20=60 độ
C=5.20=100 độ
b) Số đo góc ngoài của B là:180-60=120 đọ
Số đo góc CBD là: 120:2=60 độ
số đo góc BCD là: 180-100=80 độ
=>Số đo góc AIB là: 180-60-80=40 đọ
Vậy góc ADB bằng 40 độ
Mik ko giỏi hình cho lắm
Bạn tham khảo ở đây:
Câu hỏi của Nguyễn Khánh Ngân - Toán lớp 7 - Học toán với OnlineMath
Link nek:
Câu hỏi của Nguyễn Khánh Ngân - Toán lớp 7 - Học toán với OnlineMath
Bn tham khảo ở đây nha
~ Rất vui vì giúp đc bn ~
ta có
\(\hept{\begin{cases}\widehat{B}=\frac{1}{2}\widehat{C}\\\widehat{C}+\widehat{B}=90^0\end{cases}\Rightarrow\widehat{C}+\frac{1}{2}\widehat{C}=90^0\Leftrightarrow\widehat{C}=60^0}\)
Vậy số đo góc ngoài tại đỉnh C là : \(180^0-60^0=120^0\)