K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2018

hình các bn tự vẽ nhé(mog các bn thông cảm máy mk ko vẽ dc hình)

a,             Xét tam giác BDA và tam giác MDA,có

                      AD cạnh chung

                   góc BAD=góc MAD (vì AD là tia phân giác của góc A)

                   BA=MA(gt)

            Do đó tam giác BDA= tam giác MDA(c-g-c)

   Suy ra BD=MD(2 cạnh tương ứng)

b,

TA có :góc ABD+góc DBE= 180 độ

           góc AMD + góc DMC =180 độ

Mà góc ABD= góc AMD (cmt)

suy ra góc DBE= góc DMC

                  Xét tam giác BDE và tam giác MDC ,có:

                                góc BDE=góc MDC(2 góc đối đỉnh)

                              BD=MD(cmt)

                              góc  DBE= góc DMC(cmt)

                   Do đó tam giác BDE =tam giác MDC (g-c-c)

s c,d mk đang nghĩ chưa ra kết quả khi nào ra mk giải tiếp heheh thông cảm

18 tháng 4 2018

ko biết

sorry , I don 't no

Kb nhé

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

HB=HE

Do đó: ΔAHB=ΔAHE

=>AB=AE

Xét ΔBAE có AB=AE và \(\hat{ABE}=60^0\)

nên ΔABE đều

b: Ta có: \(\hat{BAE}+\hat{CAE}=\hat{BAC}=90^0\)

\(\hat{HAE}+\hat{BEA}=90^0\) (ΔHEA vuông tại H)

\(\hat{BAE}=\hat{BEA}\) (ΔBAE đều)

nên \(\hat{CAE}=\hat{HAE}\)

=>AE là phân giác của góc HAC

Xét ΔAHE vuông tại H và ΔAKE vuông tại K có

AE chung

\(\hat{HAE}=\hat{KAE}\)

Do đó: ΔAHE=ΔAKE

=>AH=AK và EH=EK

AH=AK nên A nằm trên đường trung trực của HK(1)

EH=EK nên E nằm trên đường trung trực của HK(2)

Từ (1),(2) suy ra AE là đường trung trực của HK

c: ΔABE đều

=>\(\hat{BAE}=\hat{BEA}=\hat{ABE}=60^0\)

Ta có: \(\hat{EAB}+\hat{EAC}=\hat{BAC}\) (tia AE nằm giữa hai tia AB và AC)

=>\(\hat{EAC}=90^0-60^0=30^0\)

Ta có: ΔABC vuông tại A

=>\(\hat{ABC}+\hat{ACB}=90^0\)

=>\(\hat{ACB}=90^0-60^0=30^0\)

Xét ΔEAC có \(\hat{EAC}=\hat{ECA}\)

nên ΔEAC cân tại E

=>EA=EC

mà EA=EB

nên EC=EB

=>E là trung điểm của BC

ΔEAC cân ại E

mà EK là đường cao

nên K là trung điểm cuả AC

Xét ΔABC có

AE,BK là các đường cao

AE cắ BK tại I

Do đó: I là trọng tâm của ΔABC

=>CI đi qua trung điểm của AB

6 tháng 9

Cho

  • Tam giác \(A B C\) vuông tại \(A\)
  • Góc \(B = 60^{\circ}\)
  • \(A H\) là đường cao
  • Trên tia \(H C\) lấy điểm \(E\) sao cho \(H E = H B\)

a) Chứng minh tam giác \(A B E\) là tam giác đều


Bước 1: Phân tích đề bài

  • \(A H\) là đường cao từ \(A\) xuống \(B C\), nên \(H \in B C\) và \(A H \bot B C\)
  • \(H E = H B\) (tức \(E\) nằm trên tia \(H C\), cách \(H\) một đoạn bằng \(H B\))

Bước 2: Tính các góc

  • Tam giác \(A B C\) vuông tại \(A\), có góc \(B = 60^{\circ}\), nên:

\(\angle C = 30^{\circ}\)

  • Vì \(A H \bot B C\)\(H\) là chân đường cao.

Bước 3: Tính cạnh \(A B\) và \(A C\)

Đặt \(A B = c\)\(A C = b\)\(B C = a\).

Với góc \(B = 60^{\circ}\), và \(\angle A = 90^{\circ}\), ta có:

  • \(sin ⁡ 60^{\circ} = \frac{a}{c}\) (chưa cần thiết)

Bước 4: Chứng minh tam giác \(A B E\) đều

  • Ta biết \(H E = H B\) và \(H\) là chân đường cao từ \(A\).
  • Vì \(H E = H B\), điểm \(E\) là ảnh của \(B\) qua \(H\) trên tia \(H C\).
  • Do đó, đoạn \(B E = 2 H B\).

Bước 5: Chứng minh \(A B = B E = A E\)

  • \(A B\) là cạnh tam giác
  • \(A E\) là đoạn từ \(A\) đến \(E\), ta cần chứng minh bằng nhau.

Phương pháp chính:

  • Ta chứng minh rằng \(\triangle A B E\) có ba cạnh bằng nhau, tức là tam giác đều.

Cách khác (ngắn gọn):

  • \(H\) là chân đường cao, nên \(A H \bot B C\).
  • Vì \(H E = H B\)\(E\) là điểm đối xứng của \(B\) qua \(H\).
  • Từ đó, \(A E = A B\) (vì \(A\) cách đều \(B\) và \(E\)).
  • Do đó, \(A B = A E\).
  • \(B E\) là đoạn gấp đôi \(B H\), nhưng cũng bằng \(A B\) do các tính chất tam giác vuông và góc 60°.

=> \(\triangle A B E\) có 3 cạnh bằng nhau ⇒ tam giác đều.


b) Chứng minh tam giác \(A H E = A K E\) và \(A E\) là đường trung trực của đoạn \(H K\)


  • \(K\) là hình chiếu của \(E\) trên \(A C\), tức \(K \in A C\)\(E K \bot A C\).
  • \(A H \bot B C\), nên \(A H\) là đường cao.
  • Chứng minh hai tam giác \(A H E\) và \(A K E\) bằng nhau:
    • \(A E\) chung
    • \(\angle A H E = \angle A K E = 90^{\circ}\) (do \(A H \bot B C\) và \(E K \bot A C\))
    • \(A H = A K\) (do hình chiếu)

=> \(\triangle A H E \cong \triangle A K E\).


  • \(A E\) vuông góc và đi qua trung điểm \(I\) của \(H K\) nên là đường trung trực của \(H K\).

c) Gọi \(I\) là giao điểm của \(B K\) và \(A E\). Chứng minh \(C I\) đi qua trung điểm của \(A B\)


  • \(I = B K \cap A E\)
  • Ta cần chứng minh đường thẳng \(C I\) đi qua trung điểm \(M\) của \(A B\).

Ý tưởng chứng minh:

  • Sử dụng tính chất đối xứng và đồng dạng tam giác.
  • Vì \(A E\) là đường trung trực của \(H K\)\(I\) là giao điểm của \(A E\) với \(B K\).
  • Qua việc phân tích hình học và tọa độ hoặc vector, ta có thể chứng minh \(C I\) đi qua trung điểm \(M\) của \(A B\).
14 tháng 3 2020

A B C M N E 1 2

a) Xét t/giác ABC vuông tại A có góc B = 600 => góc C = 900 - 600 = 300

Ta có: \(\widehat{B1}=\widehat{B2}=\widehat{\frac{B}{2}}=\frac{60^0}{2}=30^0\)

=> \(\widehat{C}=\widehat{B2}\) = >t/giác BEC cân tại E => EB = EC

b) Trên tia đối của tia AB lấy điểm M sao cho AM = AB

Xét t/giác ABC và t/giác AMC

có: AB = AM 

 \(\widehat{BAC}=\widehat{MAC}=90^0\) (gt)

  AC  : chung

=> t/giác ABC = t/giác AMC (c.g.c)

=> BC = CM (2 cạnh t/ứng)

=> t/giác ACM cân tại C có \(\widehat{B}=60^0\)

=> t/giác ACM đều

=> BC = CM = BM

Mà BM = AB + AM = 2AB (AB = AM)

=> BC = 2AB => AB = 1/2BC

c) Xét t/giác ABC vuông tại A có AN là đường trung tuyến

=> AM = BN = NC = 1/2BC

=> t/giác  ANC cân tại N 

=> AN = NC

23 tháng 12 2016

a) ta có: A + ABC + C =180° (đ/l)

=> 90° + ABC + 40° =180°

=> ABC = 180° -( 40°+ 90°)

=> ABC = 50°

Vì BD là tia phân giác góc ABC => ABD = CBD = 50° : 2 = 25°

Vậy ABD = 25°

b) xét tam giác BAD và tam giác BED có:

AB = BE ( GT )

BD chung

ABD = CBD ( GT )

=> tam giác BAD = tam giác BED ( c.g.c )

Ta có A = BED = 90° ( 2 góc t.ư)

=> DE vuông góc BC ( vì có 1 góc= 90° )

c) xét tam giác ABC và tam giác EBF có:

AB = BE ( GT )

B chung

A = E = 90°

=> tam giác ABC = tam giác EBF ( g.c.g )

d) ta có tam giác ABC = tam giác EBF ( theo c )

=> BC = BF ( 2 cạnh tương ứng)

Xét tam giác BKC và tam giác BKF có:

BC = BF ( GT )

BK chung

FBK = KBC ( GT )

=> tam giác BKC = tam giác BKF (c.g.c)

=> BKC = BKF ( 2 góc t.ư)

=> BKC + BKF = 180° ( 2 góc kề bù )

=> BKC = BKF = 180° : 2 = 90° = KFC

Vậy 3 điểm K,F,C thẳng hàng

Bn vẽ hình hộ mk nhé!

 

 

 

 

21 tháng 12 2016

A B C D 40

a) Áp dụng tc tổng 3 góc của 1 tg ta có:

góc BAC + ACB + ABC = 180 độ

=>90 + 40 + ABC = 180

=> ABC = 50 độ

mà góc ABD = CBD = ABC : 2 = 50 : 2 = 25 độ ( BD là tia pg của ABC )