K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AC=căn 10^2-8^2=6cm

AH=6*8/10=4,8cm

AE=AH^2/AB=4,8^2/8=2,88cm

AF=AH^2/AC=4,8^2/6=3,84cm

S AEF=1/2*2,88*3,84=5,5296cm2

S ABC=1/2*6*8=24cm2

=>S BEFC=24-5,5296=18,4704cm2

12 tháng 10 2023

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

\(S_{AEF}=\dfrac{1}{16}\cdot S_{ABC}\)

=>\(\dfrac{1}{2}\cdot AE\cdot AF=\dfrac{1}{16}\cdot\dfrac{1}{2}\cdot AB\cdot AC\)

=>\(AE\cdot AF=\dfrac{1}{16}\cdot AB\cdot AC\)

=>\(\dfrac{AH^2}{AB}\cdot\dfrac{AH^2}{AC}=\dfrac{1}{16}\cdot AB\cdot AC\)

=>\(AH^4=\dfrac{1}{16}\cdot AB^2\cdot AC^2\)

=>\(AH^2=\dfrac{1}{4}\cdot AB\cdot AC=\dfrac{1}{4}\cdot AH\cdot BC\)

=>\(AH=\dfrac{1}{4}\cdot BC\)

Gọi M là trung điểm của BC

=>AH vuông góc HM tại H

ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(AM=\dfrac{1}{2}BC\)=MB=MC

=>\(\dfrac{AH}{AM}=\dfrac{1}{2}\) và ΔMAC cân tại M

Xét ΔAHM vuông tại H có

\(sinAMH=\dfrac{AH}{AM}=\dfrac{1}{2}\)

=>\(\widehat{AMB}=30^0\)

=>\(\widehat{AMC}=150^0\)

ΔMAC cân tại M

=>\(\widehat{MCA}=\dfrac{180^0-\widehat{AMC}}{2}=15^0\)

=>\(\widehat{ACB}=15^0\)

23 tháng 10 2021

a, Áp dụng HTL: \(BC=\dfrac{AB^2}{BH}=18\left(cm\right)\)

Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=9\sqrt{3}\left(cm\right)\)

Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot9\sqrt{3}}{18}=\dfrac{9\sqrt{3}}{2}\left(cm\right)\)

b, Áp dụng HTL: \(\left\{{}\begin{matrix}AB\cdot AE=AH^2\\AC\cdot AF=AH^2\end{matrix}\right.\Rightarrow AB\cdot AE=AC\cdot AF\)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)

Mà góc A chung nên \(\Delta AEF\sim\Delta ACB\left(c.g.c\right)\)

Do đó \(\widehat{AEF}=\widehat{ACB}\)

22 tháng 9 2017

Tương tự, HS tự làm

1 tháng 7 2022

a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:

AH2=BH.HC=9.16=144

<=>AH=√144=12((cm)

Áp dụng định lý Pytago vào tam giác vuông BHA ta có:

BA2=AH2+BH2=122+92=225

<=>BA=√225=15(cm)

Áp dụng định lý Pytago vào tam giác vuông CHA ta có:

CA2=AH2+CH2=122+162=20(cm)

Vậy AB=15cm,AC=20cm,AH=12cm

a: CH=6cm

\(AB=\sqrt{BH\cdot BC}=4\left(cm\right)\)

\(\widehat{C}=30^0\)

7 tháng 10 2021

\(a,BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\left(pytago\right)\)

\(b,\) Áp dụng HTL: \(AH\cdot BC=AB\cdot AC\Leftrightarrow AH=\dfrac{9\cdot12}{15}=7,2\left(cm\right)\)

\(c,\) Dễ thấy AEHF là hcn

Do đó \(\widehat{HAF}=\widehat{EFA}\)

Mà \(\widehat{HAF}=\widehat{HBA}\left(cùng.phụ.\widehat{HAB}\right)\)

Do đó \(\widehat{EFA}=\widehat{HBA}\)

Ta có \(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{EFA}\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AEF\sim\Delta ACB\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\Rightarrow AE\cdot AB=AF\cdot AC\)

\(d,\) Áp dụng HTL: \(\left\{{}\begin{matrix}AH^2=EA\cdot AB\\AH^2=FA\cdot AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AE=\dfrac{AH^2}{AB}=5,76\left(cm\right)\\AF=\dfrac{AH^2}{AC}=4,32\left(cm\right)\end{matrix}\right.\)

\(\Rightarrow S_{AEF}=\dfrac{1}{2}AE\cdot AF=\dfrac{1}{2}\cdot5,76\cdot4,32=12,4416\left(cm^2\right)\)

Mà \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=54\left(cm^2\right)\)

Vậy \(S_{BEFC}=S_{ABC}-S_{AEF}54-12,4416=41,5584\left(cm^2\right)\)

 

 

 

27 tháng 10 2023

loading...  loading...  loading...  loading...  

25 tháng 8 2016

a, Xét ΔABH và ΔAHD có

       Góc A chung

        Góc ADH=Góc AHB=90° 

=> ΔABH ~ΔAHD(g.g)

=> AH/AB=AD/AH

=> AB.AD=AH²(1)

Xét ΔAEH và ΔAHC có:

Góc A chung 

Góc AEH = góc AHC

=>ΔAEH~ΔAHC(g.g)

=> AE/AH=AH/AC

=>AE.AC=AH²(2)

Từ (1);(2) => AD.AB=AE.AC(đpcm)

b, vì ΔABC vuông tại A có AI là trung tuyến ứng với cạnh huyền=> BI=IC=AI

=> ΔAIC cân tại I

=>góc IAC =góc ICA

Ta cũng có ΔBIA cân tại I =>góc IBA=góc BAI

Mà góc BAI =góc AED(cùng phụ)

         => góc IBA=góc AED

Mà ABI+góc ACI= 90°

=>    gócAED + góc IAC=90° 

      => DEvuông góc vs AI

c, 

27 tháng 8 2016

mình làm câu c,d nek bạn

c, ta có\(\Delta\)HEC vuông tại E( vì E là hình chiếu của H nên Góc E=90 độ)

        => EN là đường trung tuyến ứng vs cạnh huyền

        => EN=NH=NC( vì N là trung điểm của HC)

         => \(\Delta\)ENC cân tại N(NE=NC cmt)

        => góc NEC=góc NCE(hai góc đáy) (1)

     chứng minh tương tự trong \(\Delta\)BMD cân tại M

       => góc DBM=góc MDB(2)

ta có \(\Delta\)ABC vuông tại A nên góc DBM+góc NCE=90 độ

                                            =>góc MDB+ góc NEC(vì (1);(2))    (3)

      và \(\Delta\)\(\Delta\)
DAE vuông tại A nên góc ADE+góc AED=90 độ (4)

từ (3);(4)=>góc BDM+góc ADE=90 độ

              => góc MDH+góc HDE=90 độ ( 180 độ - (MDH+HDE))

              => DM\(\perp\) DE (*)

     và    góc DEA+ góc NEC=90 độ

            => góc HDE+góc HEN= 90 độ 

           => DE\(\perp\) EN (**)

từ (*); (**)=> MDEN là hình thang (DM // EN vì cùng \(\perp\)vs DE)

d, Ta có DHEA là hình chữ nhật (góc D= góc H =Góc E=90 độ)

=> OH=OA=OD=OE (t/c đường chéo hcn)

=> OH=OA=HA/2

ta có HM+HN=BM+NC(vì BM=MH; NH=NC)

    =>  MH+HN=BC/2=>MN=1/2 BC

 diện tích \(\Delta\)ABC =1/2. AH. BC

 diện tích \(\Delta\)MON=1/2.OH.MN=1/2.1/2AH.1/2BC

Vậy (S\(\Delta\) MON)/(S\(\Delta\)ABC)=(1/2.AH.BC)/(1/8 AH.BC)

                                         =4

Mình nghĩ là làm như vậy, có gì bạn góp ý nhahihi

 

 

7 tháng 9 2021

Lấy 1 điểm I bất kì .Kẻ IM vuông góc BC

vì 2SIBC=SABC

=>IM.BC=1/2AH.BC

=> 2IM=AH

Vậy điểm I bất kì sao cho khoảng cách từ I đến BC=1/2 AH thì 2SIBC=SABC