K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2019

A B C D E 6 H

a) BC = \(\sqrt{AB^2+AC^2}\)\(\sqrt{6^2+8^2}\)\(\sqrt{100}\)= 10 (theo định lí Pythagoras)

\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)\(\frac{CD}{BC}\)\(\frac{AD}{DC}\)\(\frac{AB}{BC}\)\(\frac{6}{10}\)\(\frac{3}{5}\).

b) Ta có : \(\widehat{ABE}\)\(\widehat{EBC}\)(BD là phân giác)

=> \(\Delta ABD\)\(\Delta EBC\)(gg)

=> \(\frac{BD}{BC}\)\(\frac{AD}{EC}\)<=>  BD.EC = AD.BC (đpcm).

c) Ta có : \(\Delta CHE\)\(\Delta CEB\)( 2 tam giác vuông có chung góc C )

=> \(\frac{CH}{CE}\)\(\frac{CE}{CB}\)<=>  CH.CB = CE2                                                     (1)

                \(\Delta CDE\)\(\Delta BDA\)(gg  (2 góc đối đỉnh))

                 \(\Delta BDA~\Delta BCE\) (câu b))

=> \(\Delta CDE~\Delta BCE\)

=> \(\frac{CE}{BE}\)\(\frac{DE}{CE}\)<=> BE.DE = CE2                                                        (2)

Từ (1) và (2) => CH.CB = ED.EB (đpcm).

13 tháng 2 2021

a, Xét △ ABC vuông tại A có: 

BC2 = AC2 + AB2 (định lý Pytago)

=> BC2 = 62 + 82 = 100

=> BC = 10 cm

Vì AD là phân giác \(\widehat{BAC}\) (gt)

\(\Rightarrow\frac{CD}{AC}=\frac{BD}{AB}=\frac{CD+BD}{AC+AB}=\frac{BC}{6+8}=\frac{10}{14}=\frac{5}{7}\)(áp dụng t/c dãy tỉ số bằng nhau)

Do đó: \(\frac{CD}{AC}=\frac{5}{7}\) \(\Rightarrow\frac{CD}{6}=\frac{5}{7}\) \(\Rightarrow CD=\frac{6.5}{7}=\frac{30}{7}\)(cm)

\(\frac{BD}{AB}=\frac{5}{7}\)\(\Rightarrow\frac{BD}{8}=\frac{5}{7}\)\(\Rightarrow BD=\frac{8.5}{7}=\frac{40}{7}\)(cm)

b, Xét △AHB vuông tại H và △AEH vuông tại E

Có: \(\widehat{HAB}\)là góc chung

=> △AHB ᔕ △AEH (g.g)

\(\Rightarrow\frac{AH}{AE}=\frac{AB}{AH}\)

=> AH . AH = AE . AB

=> AH2 = AE . AB

c, Xét △AHC vuông tại H và △AFH vuông tại F

Có: \(\widehat{HAC}\)là góc chung

=> △AHC ᔕ △AFH (g.g)

\(\Rightarrow\frac{AH}{AF}=\frac{AC}{AH}\)

=> AH2 = AF . AC

mà AH2 = AE . AB (cmt)

=> AE . AB = AF . AC

25 tháng 4 2017

Hiện tai  minh chi moi giai được cau a thoi.                                                                      a, Áp dung định lý py-ta-go cho tam giác Vuông ABC:                                             AB^2+AC^2=BC^2.                                        6^2+8^2=BC^2                                         36+64=100.                                                    vay can100=10cm

25 tháng 4 2017

A B C H D

a/ Làm luôn cho hoàn chỉnh:

Xét tam giác ABC vuông tại A có:

\(AB^2+AC^2=BC^2\left(pytago\right)\)

\(6^2+8^2=BC^2\)

\(36+64=BC^2\)

\(100=BC^2\)

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

b/ Xét tam giác ABC và tam giác AHB có:

    \(\hept{\begin{cases}\widehat{ABC}:chung\\\widehat{BAC}=\widehat{AHB}=90^0\left(gt\right)\end{cases}}\)

=> tam giác ABC ~ tam giác HBA (g.g)

c/ Từ chứng minh câu b

\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\Rightarrow AB^2=BC.BH\)

* Tính \(BH\):

Sử dụng chính tỉ số bên trên: \(\frac{AB}{BH}=\frac{BC}{AB}\Leftrightarrow\frac{6}{BH}=\frac{10}{6}\Rightarrow BH=\frac{6.6}{10}=3,6\left(cm\right)\)

* Tính \(HC\):

\(HC=BC-HB=10-3,6=6,4\left(cm\right)\)

d/ Xét tam giác ABD và tam giác ACD có:

    \(\hept{\begin{cases}\widehat{BAD}=\widehat{DAC}\left(gt\right)\\\frac{BD}{AB}=\frac{DC}{AC}\left(tinhchatphangiac\right)\end{cases}}\)

=> tam giác ABD ~ tam giác ACD (c.g.c)

Tới đây bí rồi, để nghĩ tiếp