Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác ABC vuông tại A và tam giác ADE vuông tại A có:
AD=AB(gt)
AE=AC( gt)
=>Tam giác ABC=tam giác ADE (2 cạnh góc vuông)
b) Tam giác ABD có: A=900 ; AB=AD (gt)
=>Tam giác ABD vuông cân tại A.
Mk biết làm nhiu đó thui
![](https://rs.olm.vn/images/avt/0.png?1311)
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
![](https://rs.olm.vn/images/avt/0.png?1311)
la sao eo hieu anh oi em moi lop 5 anh lop 7 saoe lam dc ha troi,voi lai bai do cau hoi giong em nhung bai em la tim ti so % cua AI va IC anh lam dc ko giai giup em voi anh.Anh ko giai dc xung dang lam gi la lop 7 ha anh,em noi co dung ko????EM NOI VAY LA DUNG CHINH XAC,DUNG CCMNR!!!!!!!!!!!!:))))))
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:
a) AM=IK
b) Tam giác AMI bằng tam giác IKC
c) AI=IC
Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR
a) BD= CE
b) tam giác OEB bằng tam giác ODC
c) AO là tia phân giác cua góc BAC
Được cập nhật 41 giây trước (20:12)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Xét tam giác BAD và tam giác BKD có :
BD : cạnh chung
BA = BK
Góc ABD = Góc DBK
==> Tam giác ABD = Tam giác KBD ( C - G - C )
==> AD = DK ( đpcm )
b, Xét tam giác ADE và tam giác KDC có :
AD = DK
Góc ADE = Góc KDC
Góc DAE = Góc DKC
==> Tam giác ADE = Tam giác KDC ( G - C - G )
c, Xét tam giác BAM và tam giác BKM có :
BM : cạnh chung
BA = BK
Góc ABM = Góc MBK
==> Tam giác ABM = Tam giác KBM ( C - G - C )
==> Góc BMA = Góc BMK Mà Góc AMK = 180 độ
==> Góc BMA = Góc BMK = 90 độ
==> AK vuông góc với BD
Ta có hình vẽ
Tớ chỉ vẽ hình thôi còn bài tự làm nhé! g
Gợi ý:
a) trước tiên ta xét Tam giác chứa cạnh AD và DK
Còn Muốn CM EK vuông góc vói BC thì CM nó tạo thành một góc 90 độ
b) chúng minh theo các trường hợp (c.g.c) (g.c.g) (c.c.c)
![](https://rs.olm.vn/images/avt/0.png?1311)
1
B A C K D H
a)Xét \(\Delta\)ABD:AB=BD=>\(\Delta\)ABD cân tại B=>BAD=BDA
b)Xét \(\Delta\)AHD:HAD+HDA=90(do AHD=90) (1)
Lại có:BAH+HAD+DAC=90(do bằng góc BAC) (2)
Mặt khác:BAD=BDA (chứng minh trên) (3)
Từ (1), (2) và (3) suy ra :HAD=DAC=>AD là tia phân giác góc HAC
c)Xét \(\Delta\)ADH và \(\Delta\)ADK:
AHD=AKD=90
AD chung
HAD=DAK(AD là tia phân giác góc HAC)
=>\(\Delta\)ADH=\(\Delta\)ADK(cạnh huyền-góc nhọn)
d)Xét \(\Delta\)ABH:AB<BH+AH
Xét \(\Delta\)ACH:AC<AH+CH
Suy ra:AB+AC<BC+2AH
2.
B A C K D E G
a)Xét \(\Delta\)AKE và \(\Delta\)ACE:
AKE=ACE=90
AE:chung
EAK=EAC
=>\(\Delta\)AKE=\(\Delta\)ACE(cạnh huyền-góc nhọn)=>AC=AK=>\(\Delta\)AKC cân tại A=>AE là đường phân giác đồng thời là đường vuông góc=>AC=AK và AE\(\perp\)CK
b)Xét \(\Delta\)ABC:C=90;A=60=>B=30
AE là đường phân giác góc BAC=>KAE=1/2.BAC=30
Suy ra:\(\Delta\)BAE cân tại E=>EK là đường vuông góc đồng thời là đường trung tuyến=>KA=KB
c)\(\Delta\)BAE cân tại E=>EB=EA
Xét ACE:C=90=>EA>AC
Mà:EB=EA(chứng minh trên)
Suy ra:EB>AC
d)Xét \(\Delta\)ADB và\(\Delta\)BCA:
ADB=BCA=90
AB:chung
BAD=ABC(cùng bằng 30)
=>\(\Delta\)ADB=\(\Delta\)BCA(cạnh huyền-góc nhọn)=>AD=BC
Gọi G là giao điểm của BD và AC,ta cần chứng minh G;E;K thẳng hàng
Xét \(\Delta\)ABG có 2 đường cao AD và BC cắt nhau tại E
Nên E là trực tâm hay GE\(\perp\)AB
Mà EK\(\perp\)AB
Nên: GE trùng EK hay G;E;K thẳng hàng
Suy ra AC,BD,EK đồng quy tại G
B A D K H C
a) Tam giác BCD có CA vừa là đường cao vừa là trung tuyến
=> tam giác BCD cân tại C
b) Tam giác BCD cân tại C có CA là đường cao
=> CA đồng thời là phân giác
Vậy CA là phân giác góc BCA
=> AH = AK (tính chất tia phân giác)
Chứng minh: (nếu chưa học)
Xét 2 tam giác vuông: tgiac CHA và tgiac CKA có:
cạnh CA: chung
góc HCA = góc KCA (cmt)
suy ra: tgiac CHA = tgiac CKA (ch_gn)
=> AH = AK; CH = CK
c) Tam giác CHK cân tại C (CH = CK)
=> \(\widehat{CHK}=\frac{180^0-\widehat{C}}{2}\) (1)
Tam giác BCD cân tại C
=> \(\widehat{CBD}=\frac{180^0-\widehat{C}}{2}\) (2)
Từ (1) và (2) suy ra: góc CHK = góc CBD
mà 2 góc này đồng vị
=> HK // BD
d) Áp dụng Pytago ta có:
AB2 + AC2 = BC2
=> AB2 = BC2 - AC2 = 144
=> AB = 12
=> BD = 2AB = 24