K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=10^2-8^2=36\)

hay AB=6(cm)

Vậy: AB=6cm

b) Ta có: BM=4cm(gt)

BA=6cm(cmt)

Do đó: \(\dfrac{BM}{BA}=\dfrac{2}{3}\)

Xét ΔBCD có 

BA là đường trung tuyến ứng với cạnh CD(A là trung điểm của CD)

M\(\in\)BA(gt)

\(\dfrac{BM}{BA}=\dfrac{2}{3}\)(cmt)

Do đó: M là trọng tâm của ΔBCD(Định lí)