\(\alpha\)

Biết \(\t...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\tan\)\(\alpha\)= tan B =\(\frac{5}{12}\)\(\approx\)230
AC = AB. tan B \(\approx\)6. tan 230 \(\approx\)2,5(cm)
góc C = 900 - góc B \(\approx90^0-23^0\approx67^0\)(hai góc phụ nhau)
BC\(=\frac{AB}{\cos C}\approx\frac{6}{\cos67^0}\approx15,4\)(cm)
Đúng thì k mk cũng mới học nên k pk hk nhak
 

Xét tam giác ABC vuông tại A có \(tan\alpha=\frac{3}{4}=\frac{AC}{AB}=\frac{AC}{8}\Leftrightarrow AC=\frac{3.8}{4}=\frac{24}{4}=6\left(cm\right)\)

Áp dụng ĐL Pytago vào tam giác ABC vuông tại A ta có : 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)

Vậy \(AC=6cm;BC=10cm\)

23 tháng 8 2021

Vì tam giác ABC vuông tại A :

-> tan a = \(\frac{AC}{AB}\) Hay tan a = \(\frac{AC}{8}\)

Lại có tan a = \(\frac{3}{4}\) -. AC=  \(\frac{8.3}{4}\)= 6 

Xét tam giác ABC vuông tại A có :\(AC^2\)\(AB^2\)\(BC^2\)

Tính ra BC = 10 

CHÚNG BẠN HỌC TỐT :)))

27 tháng 7 2017

Tam giác ABC vuông tại A => tan B = tan a => \(\frac{AC}{AB}=\frac{5}{12}\)

Mà AB= 6cm => AB= (AC.12)/5= (6.5)/12 = 2,5 cm

Áp dụng định lý py ta go ta có : BC^2 = AB^2 + AC^2 = 6^2 + 2,5 ^2 = \(\frac{169}{4}\) => BC=\(\sqrt{\frac{169}{4}}\)\(\frac{13}{2}\)= 6,5 cm

10 tháng 9 2020

                                       A B C

a) Vì \(\widehat{B}=\alpha\)\(\tan\alpha=\frac{5}{12}\)

\(\Rightarrow\frac{AC}{AB}=\frac{5}{12}\)

mà \(AB=8\)\(\Rightarrow\frac{AC}{8}=\frac{5}{12}\)

\(\Rightarrow AC=\frac{8.5}{12}=\frac{10}{3}\)

Vậy \(AC=\frac{10}{3}\)

b) Vì \(\Delta ABC\)vuông tại A nên áp dung định lý Pytago ta có:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow8^2+\left(\frac{10}{3}\right)^2=BC^2\)

\(\Rightarrow BC^2=\frac{676}{9}\)\(\Rightarrow BC=\frac{26}{3}\)

Vậy \(BC=\frac{26}{3}\)

7 tháng 7 2017

a) 2,5 cm

b)6,5 cm

11 tháng 10 2015

Kẻ phân giác BD \(\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}\Rightarrow\frac{AD}{AD+CD}=\frac{AB}{AB+BC}\Rightarrow\frac{AD}{AC}=\frac{AB}{AB+BC}\Rightarrow AD=\frac{bc}{a+c}\)

\(tan\frac{\alpha}{2}=\frac{AD}{AB}=\frac{\frac{bc}{a+c}}{c}=\frac{b}{a+c}\left(đpcm\right)\)

 

27 tháng 9 2016

a, theo đề ta có : \(\frac{AC}{AB}\) = \(\frac{5}{12}\)

                          => AC= 6.5:12=2,5

b, ta có: BC= \(\sqrt{AC^2+AB^2}\) = \(\frac{13}{2}\)