\(\frac{2}{3}\) BM, G là trung điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2016

) Gọi M là trung điểm BC. Lấy điểm D sao cho O là trung điểm CD

Xét Δ BCD có M là trung điểm BC, O là trung điểm CD  OM là đường trung bình của Δ BCD

 OM=12DB và OM // DB 

mà OM⊥BC ( OM là đường trung trực của BC )  DB⊥BC

mà AH⊥BC( AH là đường cao của ΔABC )  AH // DB

Xét ΔABH và ΔBAD có

HABˆ=DBAˆ( 2 góc so le trong do AH // DB )

AB chung

ABHˆ=BADˆ( 2 góc so le trong do AH // DB )


ΔABH=ΔBAD( g-c-g )

 AH = BD mà OM=12DB  OM=12AH 

 AH = 2 OM ( đpcm )

b) Gọi G' là giao điển của AM và OH, P là trung điểm G'H, Q là trung điểm G'A

Xét Δ AG'H có P là trung điểm G'H, Q là trung điểm G'A  PQ là đường trung bình của \large\Delta AG'H 

PQ=12AH và PQ // AH

Do PQ=12AH mà OM=12AH PQ = OM

Do AH // OM ( cùng ⊥BC ) mà PQ // AH PQ // OM

Xét ΔPQG′ và ΔOMG′ có

PQG′ˆ=OMG′ˆ( 2 góc so le trong do PQ // OM)

PQ = OM (c/m trên )

QPG′ˆ=MOG′ˆ ( 2 góc so le trong do PQ //OM )


 ΔPQG′=ΔOMG′( g-c-g )

 G'Q = G'M và G'P = G'O

Ta có G'Q = G'M mà G′Q=12G′A( Q là trung điểm G'A )  G′M=12G′Amà G'M + G'A = AM 

 G′A=23AM mà AM là trung tuyến của ΔABC

 G' là trọng tâm của ΔABC ,mà G là trọng tâm của ΔABC G′≡ G

mà G′∈OH G∈OH  O, H, G thẳng hàng ( đpcm )

Hên xui nghe bạn ^ ^

17 tháng 4 2018

a) BM là trung tuyến của tam giác ABC, G thuộc BM, BG=2/3BM => G la trọng tâm của tam giác ABC

=> GM=1/2BG

G là trung điểm của BK => GK=BG => GM+MK=BG. GM=1/2BG => 1/2BG+MK=BG => MK=1/2BG

=> GM=MK=1/2BM

Xét tam giác GKC: M trung điểm của GK, N là trung điểm của KC

=> CM và GN là trung tuyến của tam giác GKC. Mà CM, GN cắt nhau tại O

=> O là trọng tâm của tam giác GKC (đpcm)

b) GN là trung tuyển, O là trọng tâm => GO=2/3GN (1)

Xét tam giác BKC: G là trung điểm BK, N là trung điểm KC => GN=1/2BC (T/c đường trung bình) (2)

(1);(2) => GO=\(\dfrac{2}{3}.\dfrac{1}{2}=\dfrac{1}{3}\) BC (đpcm)

13 tháng 6 2020

Cảm ơn bạn nhé !! bạn trả lời hay Quá !! iu bn : ))

5 tháng 7 2017

A B C G M K N O

a) BM là trung tuyến của tam giác ABC, G thuộc BM, BG=2/3BM => G la trọng tâm của tam giác ABC

=> GM=1/2BG

G là trung điểm của BK => GK=BG => GM+MK=BG. GM=1/2BG => 1/2BG+MK=BG => MK=1/2BG

=> GM=MK=1/2BM

 Xét tam giác GKC: M trung điểm của GK, N là trung điểm của KC

=> CM và GN là trung tuyến của tam giác GKC. Mà CM, GN cắt nhau tại O

=> O là trọng tâm của tam giác GKC (đpcm)

b) GN là trung tuyển, O là trọng tâm => GO=2/3GN (1)

Xét tam giác BKC: G là trung điểm BK, N là trung điểm KC => GN=1/2BC (T/c đường trung bình) (2)

(1);(2) => GO=\(\frac{2}{3}.\frac{1}{2}=\frac{1}{3}\)BC (đpcm)

11 tháng 3 2018

vẽ hình thì theo bn kia nha m.n

a) BM là trung tuyến của tam giác ABC, G thuộc BM, BG=2/3BM => G la trọng tâm của tam giác ABC
=> GM=1/2BG
G là trung điểm của BK => GK=BG => GM+MK=BG. GM=1/2BG => 1/2BG+MK=BG => MK=1/2BG
=> GM=MK=1/2BM
 Xét tam giác GKC: M trung điểm của GK, N là trung điểm của KC
=> CM và GN là trung tuyến của tam giác GKC. Mà CM, GN cắt nhau tại O
=> O là trọng tâm của tam giác GKC (đpcm)
b) GN là trung tuyển, O là trọng tâm => GO=2/3GN (1)
Xét tam giác BKC: G là trung điểm BK, N là trung điểm KC => GN=1/2BC (T/c đường trung bình) (2)
(1);(2) => GO=
3
2 .
2
1 =
3
1 BC (đpcm)

:3

30 tháng 4 2019

B A C K E I M G

a) Ta có:MK=GK-GM=BG-1/2BG=1/2BG=1/2GK=>M là trung điểm GK

Xét \(\Delta\)KGC có 2 đường trung tuyến là CM và GE cắt nhau tại I 

=> I là trọng tâm của \(\Delta\)KGC

b)Do I là trọng tâm của \(\Delta\)KGC

Nên: CI=2/3MC

Mà: MC=1/2AC

Suy ra: CI=1/3AC

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0