Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của MA lấy K sao cho AM=MK
Xét tam giác ABM và tam giác KCM có
BM=MC(gt)
AM=MK(gt)
góc AMB= góc CMK( đối đỉnh)
=> tam giác ABM= tam giác KCM( c-g-c)
=> AB=KC
Áp dụng bất đẳng thức tam giác ta có
AK <AC+CK
<=> 2AM<AC+AB
=> AM< (AC+AB)/2
A B C M D
Trên tia đối của MA lấy điểm D sao cho MA = MD
Xét \(\Delta ABM\) và \(\Delta DCM\) có:
\(BM=CM\left(gt\right)\)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
\(MA=MD\) (cách vẽ)
\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)
\(\Rightarrow AB=CD\)(2 cạnh tương ứng)
Xét \(\Delta ACD\) có: \(AD< AC+CD\)
\(\Rightarrow2AM< AC+AB\)
\(\Rightarrow AM< \frac{AB+AC}{2}\left(1\right)\)
Xét \(\Delta MAB\)có: \(AM>AB-BM\)
Xét \(\Delta MAC\)có: \(AM>AC-MC\)
\(\Rightarrow AM+AM>AB-BM+AC-MC\)
\(\Rightarrow2AM>AB+AC-\left(BM+CM\right)\)
\(\Rightarrow2AM>AB+AC-BC\)
\(\Rightarrow AM>\frac{AB+AC-BC}{2}\left(2\right)\)
Từ (1) và (2) => \(\frac{AB+AC-BC}{2}< AM< \frac{AB+AC}{2}\left(đpcm\right)\)
A B C M D
Trên tia đối của tia AM lấy điểm D sao cho AM=MD
Xét tam giác AMB VÀ TAM GIÁC DMC có
MB=MC(gt)
AM=MD(cách dựng)
\(\widehat{AMB}=\widehat{DMC}\)(ĐÓI ĐỈNH)
\(\Rightarrow\)Tam giác AMB=Tam giác BMC(c-g-c)
\(\Rightarrow\)AB=CD(2 cạnh tương ứng)
Xét tam giác ACD có
AD<CD+AC(bất đẳng thức tam giác)
\(\Rightarrow\)AD<AB+AC(VÌ AB=CD)
Mà AD=AM+MD=2AM
\(\Rightarrow2AM< AB+AC\)
\(\Rightarrow AM< \frac{AB+AC}{2}\)(ĐPCM)
Kẻ đoạn thẳng AM
Trên tia AM lấy điểm K sao cho M là trung điểm của AK
=> MA = MK = AK/2 => 2AM = AK
M là trung điểm của BC ( gt ) => MB = MC
Xét tam giác AMB và tam giác KMC có :
MA = MK ( cmt )
AMB = KMC ( đối đỉnh )
MB = MC ( cmt )
Do đó tam giác AMB = tam giác KMC ( c . g . c )
=> AB = CK ( 2 cạnh tương ứng )
CÓ AK < AC + CK ( bất đẳng thức trong tam giác )
hay 2AM < AC + AB
=> AM < \(\frac{AC+AB}{2}\)( dpcm )
Vậy ...
Câu hỏi của Phan Thủy Tiên - Toán lớp 8 - Học toán với OnlineMath
Em tham 1 cách ở link này nhé!
Vì AD=DE=EB
=> AD=1/3 AB
\(c)\)\(\widehat{BAC}\)= 90o
\(\Rightarrow\)\(\widehat{BAE}\)= 90o ( kề bù vs góc BAC )
Xét \(\Delta ABC\) và\(\Delta ABE\) :
\(\widehat{BAC}\) = \(\widehat{BAE}\)( =90o)
\(EA=AC\)( gt )
\(BA\): Là cạnh chung
\(\Rightarrow\Delta ABC=\Delta ABE(c.g.c)\)
Mà ở câu a) Ta đã chứng minh \(\Delta ABC=\Delta CDA(c.g.c)\)
\(\Rightarrow\)\(\Delta ABE=\Delta DCA\): => góc BEA = góc DAC ( 2 góc t.ứ)
Mà 2 góc BEA và DAC nằm trong vị trí so le trong:
\(\Rightarrow BE//AM\)
\(d)\)\(CM:\)\(\Delta ABC\)Là tam giác đều