Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) "Nếu ABC là một tam giác đều thì AB = BC = CA", cả hai mệnh đề đều đúng
b) "Nếu \(\widehat{C}>\widehat{A}\) thì AB > BC". Cả hai mệnh đề đều đúng
c) "Nếu ABC là một tam giác vuông thì \(\widehat{A}=90^0\)"
Nếu tam giác ABC vuông tại B (hoặc C) thì mệnh đề đảo sai
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)
\(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\) nên \(AB\perp AC\). (1)
\(AB=\sqrt{2^2+2^2}=2\sqrt{2}\).
\(AC=\sqrt{2^2+\left(-2\right)^2}=2\sqrt{2}\)
Vì vậy AB = AC. (2)
Từ (1) và (2) suy ra tam giác ABC vuông cân tại A.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tổng a2 + b2 – c2 = 82 + 102 – 132 = -5 < 0
Vậy tam giác này có góc C tù
cos C = =
≈ -0, 3125 =>
= 91047’
b) Áp dụng công thức tính đường trung tuyến, ta tính được AM ≈ 10,89cm
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\cos A=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{10^2+13^2-8^2}{2\cdot10\cdot13}=\dfrac{205}{2\cdot10\cdot13}>0\)
=>góc A nhọn
\(\cos C=\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{8^2+10^2-13^2}{2\cdot8\cdot10}=-\dfrac{5}{2\cdot8\cdot10}< 0\)
=>góc C tù
=>ΔABC tù
b: \(MA^2=\dfrac{2\left(b^2+c^2\right)-a^2}{4}=\dfrac{2\cdot\left(10^2+13^2\right)-8^2}{4}=118.5\left(cm\right)\)
nên \(MA=\dfrac{\sqrt{474}}{2}\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
định lý hàm số sin:
a/ \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=\)2R
=> a = 2R.sinA = 2R.sin[180o - (B+C)] = 2R.sin(B+C)
và b = 2R.sinB; c = 2R.sinC thay vào (*) được:
\(\frac{2R\times sinB}{cosB}+\frac{2R\times sinC}{cosC}=\frac{2R\times sin\left(B+C\right)}{sinBsinC}\)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC)
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC)
<=> cosBcosC = sinB.sinC
<=> cosBcosC - sinB.sinC = 0
<=> cos(B+C) = 0
<=> B+C = 90o
vậy tam giác ABC vuông tại A
![](https://rs.olm.vn/images/avt/0.png?1311)
b/cosB+c/cosC=a/sinB.sinC (*)
Áp dụng định lý hàm số sin:
a/sinA = b/sinB = c/sinC = 2R
=> a = 2R.sinA = 2R.sin[1800 - (B+C)] = 2R.sin(B+C)
và b = 2R.sinB; c = 2R.sinC thay vào (*) được:
2R.sinB/cosB + 2RsinC/cosC = 2R.sin(B+C)/(sinB.sinC)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC)
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC)
<=> cosBcosC = sinB.sinC
<=> cosBcosC - sinB.sinC = 0
<=> cos(B+C) = 0
<=> B+C = 900
Theo hệ quả định lí cô sin trong tam giác ta có: cosB = c 2 + a 2 − b 2 2 c a
Từ giả thiết: c = a. cosB nên:
c = a . c 2 + a 2 − b 2 2. c a ⇒ c = c 2 + a 2 − b 2 2 c ⇒ 2 c 2 = c 2 + a 2 − b 2 ⇒ a 2 = b 2 + c 2
Do đó, tam giác ABC vuông tại A.
ĐÁP ÁN C