K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021
Ko bt okookokom
29 tháng 6 2017

Ta thấy ngay \(\Delta AIK\sim\Delta ACB\left(g-g\right)\)

Vậy tỉ số diện tích hai tam giác bằng bình phương tỉ số đồng dạng.

Do góc A = 60o nên \(\frac{AK}{AB}=cos60^o=\frac{1}{2}\)

Vậy thì \(\frac{S_{AIK}}{S_{ABC}}=\left(\frac{1}{2}\right)^2=\frac{1}{4}\Rightarrow S_{AIK}=160:4=40\left(cm^2\right)\)

23 tháng 10 2022

tại sao lại AK/AB = cos60* =1/2

 

13 tháng 9 2016

AB=21/(3+4)x3=9 cm

AC=21-9=12cm

Tự kẻ hình bạn nhé =)))

Áp dụng định lí Pitago vào tam giác ABC , có

AB^2+AC^2=BC^2

=>thay số vào, tính được BC=15cm

Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:

AB^2=BHxBC

=>BH=81/15=5.4cm

=>CH=15-5.4=9.6cm

AH^2=BHxCH=5.4x9.6=51.84cm

1 tháng 10 2023

Theo định lý sin ta có:

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=\dfrac{1}{2}\cdot4\cdot8\cdot sin30^o=8\left(cm^2\right)\)

Mà: ΔAEC vuông tại E ta có:

\(AE=sinA\cdot AC=sin30^o\cdot8=4\left(cm\right)\)

ΔABD vuông tại D nên ta có:

\(AD=sinA\cdot AB=sin30^o\cdot4=2\left(cm\right)\)

Theo định lý sin ta có:

\(S_{AED}=\dfrac{1}{2}\cdot AE\cdot AD\cdot sinA\)

\(\Rightarrow S_{AED}=\dfrac{1}{2}\cdot4\cdot2\cdot sin30^o=2\left(cm^2\right)\)

1 tháng 10 2023

hình ạ

10 tháng 8 2019

A B C D E

Gọi AH và AK lần lượt là 2 đường cao của \(\Delta ADE\)và \(\Delta ABC\)

Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^o\)nên tứ giác BCDE nội tiếp

\(\Rightarrow\widehat{AED}=\widehat{ACB}\)( cùng bù với \(\widehat{BED}\))                          

\(\Rightarrow\Delta ADE\approx\Delta ABC\left(g.g\right)\)    ( nếu chưa học tứ giác nội tiếp thì có thể xét các tam giác đồng dạng để c.m nha )

\(\Rightarrow\frac{AD}{AB}=\frac{DE}{BC}=\frac{AH}{AK}\)   ( vì tỉ số đồng dạng bằng tỉ số đường cao )

a) Ta có : \(\frac{S_{ADE}}{S_{ABC}}=\frac{\frac{DE.AH}{2}}{\frac{BC.AK}{2}}=\frac{AD}{AB}.\frac{AH}{AK}=\left(\frac{AD}{AB}\right)^2\)

Mà \(\cos A=\frac{AD}{AB}\Rightarrow\cos^2=\left(\frac{AD}{AB}\right)^2\)\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\cos^2A\)

\(\Rightarrow S_{ADE}=S_{ABC}.\cos^2A\)

b) \(S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}.\left(1-\cos^2A\right)=S_{ABC}.\sin^2A\)( vì \(\cos^2A+\sin^2A=1\))

Bài 1: 

a: \(AB=21\cdot\dfrac{3}{7}=9\left(cm\right)\)

AC=21-9=12(cm)

=>BC=15(cm)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=7,2(cm)
Xét ΔAHB vuông tại H có \(AB^2=AH^2+BH^2\)

hay BH=5,4(cm)

=>CH=9,6(cm)