Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Xét \(\Delta ANM\)và \(\Delta CND\)có :
+) \(MN=ND\left(gt\right).\)
+) \(AN=NC.\)
+) Góc \(ANM\)= Góc \(NCD.\)
\(\Rightarrow\Delta ANM=\Delta CND\left(c.g.c\right).\)
\(\Rightarrow CD=AM.\)
Mà \(AM=BM.\)
\(\Rightarrow CD=BM.\)
b/ Xét \(\Delta ABC\)có \(M,N\)lần lượt là trung điểm của \(AB,AC.\)
\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC.\)
\(\Rightarrow MN//BC\)và \(MN=\frac{1}{2}BC.\)
c/ Ta có \(MN=\frac{1}{2}BC.\)
\(\Rightarrow2MN=BC.\)
\(\Leftrightarrow MD=BC.\)
Xét tứ giác \(BMDC\)có \(MD=BC\)và \(MD//BC.\)
\(\Rightarrow\)Tứ giác \(BMDC\)là hình bình hành.
\(\Rightarrow MC\)và \(BD\)là hai đường chéo của hình bình hành \(BMDC.\)
\(\Rightarrow BD\)đi qua trung điểm của đoạn thẳng \(MC.\)
#Riin
![](https://rs.olm.vn/images/avt/0.png?1311)
c) c/m MN//BC
Xét t.g DCN = CDB (g-c-g)
=>BC=DN
Mà MN=2DN
=>BC=2DN
a ) Xét \(\Delta\)ANM và \(\Delta\)CND có :
AN = CN ( vì N là trung điểm AC )
MN = ND ( giả thiết )
Góc ANM = Góc CND ( đối đỉnh )
\(\Rightarrow\)\(\Delta\)ANM = \(\Delta\)CND ( c - g - c )
b ) Ta có : Â + góc B + góc C = 180°
\(\Rightarrow\)Â + 70° + 50° = 180°
\(\Rightarrow\)Â = 180° - ( 70° + 50° )
\(\Rightarrow\)Â = 60°
Mà Â = Góc DCN ( \(\Delta\)ANM = \(\Delta\)CND )
\(\Rightarrow\)Góc DCN = 60°
c ) Ta có : Â = Góc DCN ( cmt )
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\)AB // CD hay MB // CD
\(\Rightarrow\)◇MDCB là hình thang
Ta lại có : AM = CD ( \(\Delta\)ANM = \(\Delta\)CND )
Mà AM = MB ( vì M là trung điểm AB )
\(\Rightarrow\)MB = CD
Hình thang MDCB có hai cạnh đáy MB và CD bằng nhau nên MD = BC
Mà MD = 2MN
\(\Rightarrow\)BC = 2MN
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔAMN và ΔCDN
có AN = CN (gt)
N1 = N2 ( Tính chất 2 góc đối đỉnh)
NM = ND ( gt)
=> ΔAMN = ΔCDN ( c-g-c)
a: Xét ΔNMA và ΔNDC có
NM=ND
\(\widehat{MNA}=\widehat{DNC}\)(hai góc đối đỉnh)
NA=NC
Do đó; ΔNMA=ΔNDC
b: Xét ΔNMC và ΔNDA có
NM=ND
\(\widehat{MNC}=\widehat{DNA}\)(hai góc đối đỉnh)
NC=NA
Do đó ΔNMC=ΔNDA
=>\(\widehat{NMC}=\widehat{NDA}\)
mà hai góc này là hai góc ở vị trí so le trong
nên MC//AD
c:
Xét ΔABC có
M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>\(MN=\dfrac{1}{2}BC\)