K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có DE//BC

nên AE/AC=AD/AB

=>AE/10=3/7

hay AE=30/7(cm)

b: Xét ΔABM có DI//BM

nên DI/BM=AI/AM(1)

Xét ΔACM có EI//MC

nên EI/MC=AI/AM(2)

Từ (1) và (2) suy ra DI/BM=EI/MC

=>DI=EI

hay I là trung điểm của DE

22 tháng 3 2018

1.  Xét tam giác ABD có MI // AB nên theo định lý Talet ta có:

\(\frac{MI}{AB}=\frac{DI}{DB}\)

Xét tam giác ABC có NI // AB nên theo định lý Talet ta có:

\(\frac{NI}{AB}=\frac{NC}{BC}\)

2. Xét tam giác BDC có IN // DC nên \(\frac{DI}{DB}=\frac{NC}{BC}\)

Từ đó ta có: \(\frac{MI}{AB}=\frac{NI}{AB}\Rightarrow MI=IN\)

Vậy I là trung điểm MN (đpcm)

1 tháng 4 2018

Khó thế ai làm được hả bạn Toàn!😢😢😢😢😢

5 tháng 8 2018

1.Giải:

a. Vì tam giác ABC vuông tại A và AM = \(\frac{1}{2}\)BC

=> AM là đường trung tuyến ứng với cạnh BC

=> M là trung điểm của cạnh BC

=> AM = BM = \(\frac{1}{2}\)BC

Vì AM = BM => Tam giác ABM cân tại M

b. Vì N là trung điểm của AB

=> MN là đường trung tuyến ứng với cạnh AB của tam giác ABM

Mà tam giác ABM cân tại M ( câu a )

=> MN đồng thời là đường cao xuất phát từ M của tam giác ABM

=> \(MN\perp AB\)

Do đó: MN//AC (cùng vuông góc với AB)

=> MNAC là hình thang

Mặt khác: \(\widehat{NAC}\)\(^{90^0}\)(gt) 

=> Tứ giá MNAC là hình thang vuông.

2 tháng 8 2017

1.áp dụng pi-ta-go ta có : \(AC^2=BC^2-AB^2\Rightarrow AC=\sqrt{100-36}\)\(=8\)

MH là đường trung bình tam giác ABC nên MH=1/2 AB = 3cm

2.Có H là trung điểm MD vì M đối xứng với D qua H

H là trung điểm AC (giả thiết)

tứ giác ANCD có 2 đường chéo giao nhau tại trung điểm mỗi đường nên là hình b hành

3. chưa nghĩ ra 

4 tương tự bà trên mk giải rồi bạn tư duy nhé !

2 tháng 8 2017

3 nè

xét tam giác KHC và tam giác GHA có HC=HA . góc CHK=góc AHG đối  đỉnh . góc KCH=góc GAH (so le trong)

nên tam giác KHC = GHA => KC=AG .lại có DC=AM suy ra \(\frac{CK}{CD}=\frac{AG}{AM}\)mà G là trọng tâm tam giác ABC nên AG/AM=2/3

=> CK/CD =2/3  (điều phải cm)

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3,...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD