K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

Tính chất: Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một đường thẳng thì chúng bằng nhau.

Khi đó ta có:  P A B C   =   P A ' B ' C '   =   48 (   c m   )

Chọn đáp án D.

28 tháng 6 2018

Tính chất: Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một đường thẳng thì chúng bằng nhau.

Khi đó ta có:  P A B C   =   P A ' B ' C '   =   48 (   c m   )

Chọn đáp án D.

4 tháng 2 2017

Cho a',b',c' là số đo cạnh của tam giác A'B'C'
       a,b,c là số đo cạnh của tam giác ABC
a) Theo đề bài ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=k=\frac{3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=\frac{a'+b'+c'}{a+b+c}=\frac{P_{A'B'C'}}{P_{ABC}}=k=\frac{3}{5}\)
Vậy tỉ số chu vi hai tam giác đã cho là 3/5
b) Chu vi tam giác ABC là: \(P_{ABC}=40:\left(5-3\right)\cdot5=100\left(dm\right)\)
Chu vi tam giác A'B'C' là:  \(P_{A'B'C'}=P_{ABC}-40dm=100dm-40dm=60\left(dm\right)\)

19 tháng 4 2020

A B C A' B' C'

a, Gọi CV tam giác A'B'C' là P', ABC là P

\(\Delta A'B'C'~\Delta ABC\)theo tỉ số đồng dạng \(k=\frac{3}{5}\)

\(\Rightarrow\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=\frac{3}{5}\)

Áp dụng t/c DTSBN , ta có  :

\(\frac{3}{5}=\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)

\(=\frac{A'B'+B'C'+C'A'}{AB+BC+CA}=\frac{P'}{P}\)

Vậy tỉ số chu vi tam giác A'B'C' và ABC là \(\frac{3}{5}\)

20 tháng 4 2020

Hướng dẫn cách hack VIP OLM Vĩnh Viễn siêu dễ chỉ 10 phút là xong: youtube.com/watch?v=zYcnHqUcGZE&t

12 tháng 4 2020

Ủa 

Bạn ý đăng từ 2017 mà chẳng ai trả lời

haha

14 tháng 4 2020

bạn có muốn cết bạn với mình không

22 tháng 5 2020

\(\text{Giả sử ∆A’B’C’ ∽ ∆ABC theo tỉ số k, AM, A’M’ là hai đường trung tuyến tương ứng.}\)

\(\text{∆A’B’C’ ∽ ∆ABC}\)

\(\Rightarrow\widehat{B}=\widehat{B'}\) (1)

và \(\frac{A'B'}{AB}=\frac{B'C'}{BC} \)(2)

\(\text{mà B’C’ = 2B’M’, BC = 2BM}\)(3)

\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\Delta A'B'M'\)\(\text{đồng dạng }\)\(\Delta ABM\)

\(\Rightarrow\frac{A'M'}{AM}=\frac{A'B'}{AB}=k\)